
NASA Contractor Report 201729

Analyzing Tabular and State-Transition
Requirements Specifications in PVS

Sam Owre, John Rushby, and Natarajan Shankar
SRI International, Menlo Park, California

Contract NAS1-20334

July 1997

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

Analyzing Tabular and State-Transition

Requirements Speci�cations in PVS

NASA Contractor Report 201729

Sponsored by NASA Langley Research Laboratory under Contract NAS1-20334

Sam Owre, John Rushby, and Natarajan Shankar

Computer Science Laboratory

SRI International

Menlo Park CA 94025 USA

July 1997

Abstract

We describe PVS's capabilities for representing tabular speci�cations of the kind

advocated by Parnas and others, and show how PVS's Type Correctness Conditions

(TCCs) are used to ensure certain well-formedness properties.

We then show how these and other capabilities of PVS can be used to repre-

sent the AND/OR tables of Leveson and the Decision Tables of Sherry, and we

demonstrate how PVS's TCCs can expose and help isolate errors in the latter.

We extend this approach to represent the mode transition tables of the Software

Cost Reduction (SCR) method in an attractive manner. We show how PVS can

check these tables for well-formedness, and how PVS's model checking capabilities

can be used to verify invariants and reachability properties of SCR requirements

speci�cations, and inclusion relations between the behaviors of di�erent speci�ca-

tions.

These examples demonstrate how several capabilities of the PVS language and

veri�cation system can be used in combination to provide customized support for

speci�c methodologies for documenting and analyzing requirements. Because they

use only the standard capabilities of PVS, users can adapt and extend these cus-

tomizations to suit their own needs. Those developing dedicated tools for individual

methodologies may �nd these constructions in PVS helpful for prototyping purposes,

or as a useful adjunct to a dedicated tool when the capabilities of a full theorem

prover are required.

The examples also illustrate the power and utility of an integrated general-

purpose system such as PVS. For example, there was no need to adapt or extend

the PVS model checker to make it work with SCR speci�cations described using the

PVS TABLE construct: the model checker is applicable to any transition relation,

independently of the PVS language constructs used in its de�nition.

PVS speci�cation �les for several of the examples used here can be downloaded

from http://www.csl.sri.com/pvs/examples/tables; PVS itself is available at

http://www.csl.sri.com/pvs.html.

i

ii

Contents

1 Introduction 1

2 Basic Tables 3

2.1 The PVS COND Construct : 3

2.2 The PVS TABLE Construct : 6

2.2.1 One-Dimensional Vertical Tables : : : : : : : : : : : : : : : : 6

2.2.1.1 LaTEX-Printing Tables : : : : : : : : : : : : : : : : : 6

2.2.1.2 Enumeration Tables : : : : : : : : : : : : : : : : : : 7

2.2.1.3 Data Type Tables : : : : : : : : : : : : : : : : : : : 8

2.2.2 One-Dimensional Horizontal Tables : : : : : : : : : : : : : : : 8

2.2.3 Two-Dimensional Tables : 10

2.2.4 Blank Entries : 15

2.2.5 Variations : 19

3 AND/OR Tables and Decision Tables 23

3.1 AND/OR Tables : 23

3.2 Decision Tables : 28

4 State Transition Systems and SCR Requirements Speci�cations 39

4.1 Representing SCR Speci�cations in PVS : : : : : : : : : : : : : : : : 40

4.1.1 Well-Formedness Checking for SCR Speci�cations in PVS : : 47

4.2 Model Checking SCR Speci�cations in PVS : : : : : : : : : : : : : : 50

4.3 Interacting Transition Speci�cations : : : : : : : : : : : : : : : : : : 57

4.3.1 Requirements Speci�cation : : : : : : : : : : : : : : : : : : : 57

4.3.2 Implementation Speci�cation, and Veri�cation of Equivalence 62

5 Conclusion 65

Bibliography 69

iii

List of Figures

2.1 TCCs Generated from Example Two-Dimensional Table (continues) 12

2.1 TCCs Generated from Example Two-Dimensional Table (continues) 13

2.1 TCCs Generated from Example Two-Dimensional Table : : : : : : : 14

2.2 Quotient Lookup Table for an SRT Division Algorithm : : : : : : : : 18

3.1 PVS Rendition of the AND/OR Table from Page 23 : : : : : : : : : 27

3.2 A Simple Decision Table : 28

3.3 Preliminary PVS Constructions for the Decision Table in Figure 3.2 29

3.4 PVS Rendition of the Decision Table in Figure 3.2 : : : : : : : : : : 30

3.5 Disjointness TCC for the Speci�cation of Figure 3.4 : : : : : : : : : 31

3.6 Coverage TCC for the Speci�cation of Figure 3.4 : : : : : : : : : : : 33

3.7 False Subgoals from the Coverage TCC of Figure 3.6 : : : : : : : : 34

3.8 Corrected Version of the Decision Table in Figure 3.4 : : : : : : : : 36

4.1 Original Mode Transition Table for Cruise Control : : : : : : : : : : 41

4.2 PVS Version of the Original Speci�cation of Figure 4.1 : : : : : : : : 48

4.3 Deterministic Mode Transition Table for Cruise Control : : : : : : : 50

4.4 PVS Version of the Revised Speci�cation of Figure 4.3 : : : : : : : : 51

4.5 Corrected Mode Transition Table for Cruise Control : : : : : : : : : 55

4.6 PVS Version of the Corrected Speci�cation of Figure 4.5 : : : : : : : 56

4.7 Preamble to PVS Requirements Speci�cation for Interacting Autopi-

lot Modes : 59

4.8 Transition Relations of PVS Requirements Speci�cation for Interact-

ing Autopilot Modes : 60

4.9 PVS Implementation Speci�cation for Autopilot : : : : : : : : : : : 63

iv

Chapter 1

Introduction

An obstacle to the transfer of formal methods technology, as embodied in tools such

as PVS, is that there is rather little method in formal methods. Prospective users

of PVS, say, are provided with a powerful tool for formal speci�cation and analysis,

but are given little guidance on how best to apply this capability to their individual

problems.

On the other hand, substantial methodologies for system speci�cation and re�ne-

ment have developed in some application areas, but these have generally not been

supported by mechanized formal analysis. Several of these methodologies derived

from work at the U.S. Naval Research Laboratory (NRL) in the 1970s on software

requirements for the A-7E aircraft [21,22]. Such methods include Parnas's \four vari-

able method" [42,43], the Software Cost Reduction (SCR) method of NRL [11], the

Consortium Requirements Engineering (CoRE) method of the Software Productiv-

ity Consortium [12] and, more distantly, Harel's Statecharts [14] and its derivatives

such as Leveson's Requirements State Machine Language (RSML) [29]. These meth-

ods are intended for reactive systems|that is, systems that operate continuously

and interact with their environment|and model system requirements and behaviors

as the traces (i.e., sequences of system states, inputs, and outputs) of interacting

state machines. Some of these methods (notably Parnas's and SCR and, in di�erent

forms, RSML and the decision tables of Sherry [39]) also stress the use of tables to

specify functions and state transition relations.

These methods provide organizing principles, systematic checks for well-

formedness of speci�cations and, in some cases, simulators. For example, Heitmeyer

and others at NRL have developed a mechanized toolset that performs systematic

checks for well-formedness of SCR speci�cations and also provides a simulator for

these speci�cations [18, 20], while Heimdahl and Leveson have developed a checker

for RSML [16,17] and Hoover and others at ORA have mechanized the decision ta-

bles used by Sherry [23]. As yet, however, these and other tools for reactive systems

1

2 Chapter 1. Introduction

do not provide the kind of formal analysis that is feasible with a true veri�cation

system such as PVS; in particular, their well-formedness checks cannot decide condi-

tions that require arbitrary theorem proving, and they cannot examine application

requirements such as safety (invariant) and liveness properties.

In this report, we describe some modest enhancements recently implemented in

PVS that allow it to represent various kinds of tables in a fairly natural manner, and

to provide syntactic and semantic well-formedness checks for tabular speci�cations.

We also show how PVS's model checking capabilities can be used decide certain

properties of SCR-type state-transition speci�cations. We hope this description will

serve three purposes.

� To provide some methodological guidance for those who are using PVS in

application areas where tabular and state-transition speci�cations are appro-

priate.

� To demonstrate how the resources of a veri�cation system with a rich speci�-

cation language and a repertoire of automated proof procedures can be used in

combination to provide automated assistance in novel domains. The capabil-

ities of PVS that we exploit|namely, its powerful type system, higher-order

functions, tables, decision procedures, and model checker|are all useful in-

dividually, while their combination provides e�ective automation for various

kinds of tabular speci�cation methods at negligible development cost. Because

our treatment uses the standard capabilities of PVS, we hope that others will

be able to modify and adapt it to suit their own purposes, or to use it to

suggest ways of using PVS to automate other methodologies.

� To provide rapid prototyping and back-end support for those developing spe-

cialized tools such as NRL's SCR* toolset [18] and those for RSML [17]. For

example, we hope that experimenting with SCR model checking in PVS will

be useful to developers of the model checker planned for SCR*, and that the

ability to call, when necessary, on the full theorem-proving capability of PVS

will free them to provide really e�cient and smooth support for the majority

of well-formedness cases that do not require this capability. Some aspects of

the TableWise tool [23] were prototyped in PVS in just this way.

The body of this report is contained in three chapters. Chapter 2 describes PVS's

representation of Parnas-style tables, and its method for generating and discharging

the proof obligations that ensure completeness and consistency of tabular speci�ca-

tions. Chapter 3 shows how Leveson's AND/OR tables and Sherry's decision tables

can be represented in PVS. Chapter 4 combines the methods of the previous two

chapters to provide a treatment for SCR-style speci�cations, and shows how PVS's

model checker can be used to decide application properties of these speci�cations.

Brief conclusions are provided in Chapter 5.

Chapter 2

Basic Tables

Tables can be a convenient way to specify certain kinds of functions. An example

is the function sign(x), which returns �1; 0; or 1 according to whether its integer

argument is negative, zero, or positive. As a table, this can be speci�ed as follows.

x < 0 x = 0 x > 0

sign(x) = �1 0 +1

This is an example of a piecewise continuous function that requires de�nition by

cases, and the tabular presentation provides two bene�ts.

� It makes the cases explicit, thereby allowing checks that none of them overlap

and that all possibilities are considered.

� It provides a visually attractive presentation of the de�nition that eases com-

prehension.

The �rst of these bene�ts is a semantic issue that is handled in PVS by the COND

construct; the second is a syntactic issue that is handled in PVS by the TABLE

construct (which is a variation on COND).

2.1 The PVS COND Construct

The PVS COND construct provides for speci�cation by cases. Its general form is

COND

c1 ! e1;

c2 ! e2;

� � �
cn ! en

ENDCOND

3

4 Chapter 2. Basic Tables

where the ci are Boolean expressions and the ei are values of some single type.

The keyword ELSE can be used in place of the �nal condition cn. The construct

can appear anywhere that a value of the type of ei is expected. PVS requires that

exactly one of the ci is true and ensures this by generating two Type Correctness

Conditions (TCCs) for each COND.

Disjointness requires that each distinct ci, cj pair is disjoint (i.e., ci ^ cj is false).

Coverage requires that the disjunction of all the ci is true.

The coverage TCC is suppressed if the ELSE keyword is used; also the ci, cj compo-

nent of the disjointness TCC is suppressed when ei and ej are syntactically identical.

TCCs are proof obligations that must be discharged before the speci�cation that

generated them is considered fully typechecked. (PVS allows proof of these obliga-

tions to be postponed, but keeps track of all unsatis�ed obligations.) Given that the

TCCs are true, the COND is equivalent to, and is treated internally as, the following

construction.

IF c1 THEN e1

ELSIF c2 THEN e2

� � �
ELSE en

ENDIF

Notice that the cn condition does not need to be checked in the IF-THEN-ELSE

translation: if this was given as an explicit ELSE in the COND, then the \fall through"

default is exactly what is required; otherwise, the coverage TCC ensures that cn is

the negation of the disjunction of the other ci, and the \fall through" is again correct.

Using COND, we can specify the sign function as follows.

signs: TYPE = f x: int | x >= -1 & x <= 1g

x: VAR int

sign_cond(x): signs =

COND

x < 0 -> -1,

x = 0 -> 0,

x > 0 -> 1

ENDCOND

This generates the following TCCs, both of which are discharged by PVS's default

strategy for TCCs in less than a second. (In addition, subtype TCCs are generated

to ensure that 0, for example, is a valid element of the type signs.)

2.1. The PVS COND Construct 5

% Disjointness TCC generated (line 10) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC2: OBLIGATION

(FORALL (x: int):

NOT (x < 0 AND x = 0)

AND NOT (x < 0 AND x > 0) AND NOT (x = 0 AND x > 0));

% Coverage TCC generated (line 10) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC3: OBLIGATION (FORALL (x: int): x < 0 OR x = 0 OR x > 0);

The variant that uses the ELSE clause looks as follows.

sign_cond2(x): signs =

COND

x < 0 -> -1,

x = 0 -> 0,

ELSE -> 1

ENDCOND

It generates a simpler disjointness TCC (since there is no third case to consider),

and no coverage TCC.

% Disjointness TCC generated (line 12) for

% COND x < 0 -> -1, x = 0 -> 0, ELSE -> 1 ENDCOND

sign_cond2_TCC2: OBLIGATION (FORALL (x: int): NOT (x < 0 AND x = 0));

Both of these COND are equivalent to the following IF-THEN-ELSE form.

sign_traditional(x): signs =

IF x < 0 THEN -1 ELSIF x > 0 THEN 1 ELSE 0 ENDIF

The equivalence is demonstrated by the following lemmas

trad_cond_same: LEMMA sign_traditional = sign_cond

trad_cond2_same: LEMMA sign_traditional = sign_cond2

which can each be proved in less than a second by the PVS proof commands

(apply-extensionality :hide? t)(grind).1

Because COND is treated internally as an IF-THEN-ELSE, proofs involving COND are

mechanized in exactly the same way as IF-THEN-ELSE|that is, by the commands

(lift-if) and (split) or (bddsimp), and the higher-level commands such as

(grind) that use these.

1The :hide? t keyword argument is optional: it simply hides the original formula once exten-

sionality has been applied, and thereby reduces visual clutter in the sequent.

6 Chapter 2. Basic Tables

2.2 The PVS TABLE Construct

PVS provides TABLE constructs that allow speci�cation of one- and two-dimensional

tables. These constructions provide a fairly attractive input syntax and are LaTEX-

printed as true tables. Their semantic treatment derives directly from the COND

construct.

2.2.1 One-Dimensional Vertical Tables

These are the simplest form of table in PVS. They simply replace the -> and ,

of COND cases by | and ||, respectively, and introduce each case with |; they also

add a �nal || and change the keyword from COND to TABLE. The sign example is

therefore transformed from a COND to the following TABLE.

sign_vtable(x): signs = TABLE

%-------------%

| x < 0 | -1 ||

%-------------%

| x = 0 | 0 ||

%-------------%

| x > 0 | 1 ||

%-------------%

ENDTABLE

Note that the horizontal lines are simply comments (comments are introduced by %

in PVS). This speci�cation is equivalent to that of sign cond and generates exactly

the same TCCs and is treated the same in proofs. Note that PVS remembers

the syntactic form used in a speci�cation and always prints it out the same way

it was typed in; thus, the prover will print a table as a table, even though it is

treated semantically as a COND (which is itself treated as an IF-THEN-ELSE). Of

course, the special syntactic treatment is lost once a proof step (e.g., (lift-if))

has transformed the structures appearing in a sequent.

2.2.1.1 LATEX-Printing Tables

The PVS LaTEX-printer understands tables and automatically generates the code

necessary to print them as true tables.

sign vtable(x) : signs =

x < 0 � 1

x = 0 0

x > 0 1

2.2. The PVS TABLE Construct 7

2.2.1.2 Enumeration Tables

The tables we have seen so far involve general comparison operators in their con-

ditions. A special case arises when the intent is simply to enumerate all values of

some �nite type. In such cases, equality is the only comparison operator used, as in

the following example.

few_ints: TYPE = f x : int | x >= -2 & x <= 2g

sign_fewv(z:few_ints): signs = TABLE

%--------------%

| z = -2 | -1 ||

%--------------%

| z = -1 | -1 ||

%--------------%

| z = 0 | 0 ||

%--------------%

| ELSE | 1 ||

%--------------%

ENDTABLE

Here we are de�ning a specialized sign function by enumeration over a type consist-

ing of just the integers from -2 to +2, The z = appearing in each case is repetitive,

so PVS allows us to factor it out as follows.

sign_fewv_enum(z:few_ints): signs = TABLE

z

%----------%

| -2 | -1 ||

%----------%

| -1 | -1 ||

%----------%

| 0 | 0 ||

%----------%

|ELSE| 1 ||

%----------%

ENDTABLE

When an identi�er (here z) follows the TABLE keyword, the �rst column is implicitly

a list of values for this identi�er, and the individual entries are treated as identifier

= value.

8 Chapter 2. Basic Tables

2.2.1.3 Data Type Tables

A special case of enumeration tables arises when the values are the constructors of

an abstract data type (ADT); this most commonly arises with enumeration types

(which are implemented as degenerate ADTs in PVS), such as the following.

modes: TYPE = f off, armed, engaged g

value(m:modes):bool = TABLE

m

%------------------%

| off | false ||

%------------------%

| armed | true ||

%------------------%

| engaged | true ||

%------------------%

ENDTABLE

PVS recognizes this case specially and treats the TABLE internally as an ADT CASES

construct, rather than as a COND. This has no semantic signi�cance, but it allows

more automated theorem proving to be used, and it allows the check for disjointness

and coverage to be performed at typecheck-time (so the TCCs are not generated).

Thus, the example above is semantically equivalent to the following form, which

does generates TCCs and translates into the COND form.

value_alt(m:modes):bool = TABLE

%----------------------%

| off?(m) | false ||

%----------------------%

| armed?(m) | true ||

%----------------------%

| engaged?(m) | true ||

%----------------------%

ENDTABLE

same: LEMMA value = value_alt

The lemma can be proved by (apply-extensionality :hide? t) and (grind).

2.2.2 One-Dimensional Horizontal Tables

Horizontal tables are semantically identical to vertical tables, but use a slightly

di�erent syntax to notify PVS that the information is being presented in a di�erent

2.2. The PVS TABLE Construct 9

order. The �rst delimiter after the TABLE keyword must be |[rather than the simple

|, and the �nal delimiter on the �rst row is]| rather than ||. For example, here is

the sign function presented as a horizontal table.

sign_htable(x): signs = TABLE

%-------------------%

|[x<0 | x=0 | x>0]|

%-------------------%

| -1 | 0 | 1 ||

%-------------------%

ENDTABLE

The ELSE keyword can be used just as with vertical tables.

sign_htable2(x): signs = TABLE

%--------------------%

|[x<0 | x=0 | ELSE]|

%--------------------%

| -1 | 0 | 1 ||

%--------------------%

ENDTABLE

The PVS LaTEX-printer deals with these tables properly.

sign htable2(x) : signs =

x < 0 x = 0 else

� 1 0 1

Horizontal enumeration tables are treated similarly to vertical ones, except that

the enumerated identi�er must follow a comma (because horizontal tables are actu-

ally a species of two-dimensional table).

sign_fewh_enum(z:few_ints): signs = TABLE ,

%---------------------------------%

z |[-2 | -1 | 0 | ELSE]|

%---------------------------------%

| -1 | -1 | 0 | 1 ||

%----------------------------------%

ENDTABLE

10 Chapter 2. Basic Tables

2.2.3 Two-Dimensional Tables

These are similar to one-dimensional horizontal tables, except that there can be

more than two rows, and the �rst row has one less column than the rest. Semanti-

cally, two-dimensional tables are treated as nested COND (or CASES) constructs; more

particularly, the columns are nested within the rows. Here is a trivial example.

example(state,input): some_type = TABLE

state, input

%--------%

|[x | y |]

%--------------%

| a | p | q ||

%--------------%

| b | q | q ||

%--------------%

ENDTABLE

This translates to the following.

COND

state = a -> COND input = x -> p, input = y -> q ENDCOND,

state = b -> COND input = x -> q, input = y -> q ENDCOND

ENDCOND

Notice that this translation causes disjointness and coverage TCCs for the columns

to be generated several times|once for each row. For example, the coverage TCCs

generated for the two inner CONDs above have the following form.

coverage a: OBLIGATION state = a IMPLIES input = x OR input = y

coverage a: OBLIGATION state = b IMPLIES input = x OR input = y

These appear redundant, so we might be tempted to use the following translation

instead.

LET

x1 = COND input = x -> p, input = y -> q ENDCOND,

x2 = COND input = x -> q, input = y -> q ENDCOND

IN

COND state = a -> x1, state = b -> x2 ENDCOND

This generates the following single, simple coverage TCC for the columns.

coverage_TCC: OBLIGATION input = x OR input = y

2.2. The PVS TABLE Construct 11

The problem with this translation is that there may be subtype TCCs generated

from the terms corresponding to p and q that must be conditioned on the expressions

corresponding to a and b in order to be provable. Here is an example due to

Parnas [32, Figure 1] that illustrates this.

sqrt: [nonneg_real -> nonneg_real]

Parnas_Fig1(y,x:real):real = TABLE

%--%

|[y = 27 | y > 27 | y < 27]|

%---%

| x = 3 | 27+sqrt(27) | 54+sqrt(27) | y^2 +3 ||

%---%

| x < 3 | 27+sqrt(-(x-3)) | y+sqrt(-(x-3)) | y^2 + (x-3)^2 ||

%---%

| x > 3 | 27+sqrt(x-3) | 2*y+sqrt(x-3) | y^2 + (3-x)^2 ||

%---%

ENDTABLE

The subtype constraint on the argument to the sqrt function generates TCCs in the

second and third rows that are provable only when the corresponding row constraints

are taken into account. The LET form translation loses this information. Therefore,

PVS uses the simple nested COND translation|this sometimes leads to redundancy,

but it generates the provable TCCs shown in Figure 2.1 (e.g., the TCCs numbered 2,

8, 11, and those numbered 3, 9, 12 are duplicative). These TCCs are all discharged

in seconds by PVS's standard strategy for TCCs. In addition to the disjointness and

coverage TCCs, there are subtype TCCs from the functions sqrt and exponentiation

(indicated by ^).

The LaTEX-printed form of this speci�cation is as follows.

Parnas Fig1((y; x : real)) : real =

y = 27 y > 27 y < 27

x = 3 27 +
p
27 54 +

p
27 y2 + 3

x < 3 27 +
p

� (x � 3) y +
p

� (x � 3) y2 + (x � 3)
2

x > 3 27 +
p
x � 3 2 � y +

p
x � 3 y2 + (3 � x)

2

12 Chapter 2. Basic Tables

% Subtype TCC generated (line 60) for 2

Parnas_Fig1_TCC1: OBLIGATION

(FORALL (x: real, y: real):

x = 3 AND NOT y = 27 AND NOT y > 27 AND y < 27

IMPLIES y /= 0 OR 2 >= 0);

% Disjointness TCC generated for

% COND

% y = 27 -> 27 + sqrt(27),

% y > 27 -> 54 + sqrt(27),

% y < 27 -> y ^ 2 + 3

% ENDCOND

Parnas_Fig1_TCC2: OBLIGATION

(FORALL (x: real, y: real):

x = 3

IMPLIES NOT (y = 27 AND y > 27)

AND NOT (y = 27 AND y < 27) AND NOT (y > 27 AND y < 27));

% Coverage TCC generated for

% COND

% y = 27 -> 27 + sqrt(27),

% y > 27 -> 54 + sqrt(27),

% y < 27 -> y ^ 2 + 3

% ENDCOND

Parnas_Fig1_TCC3: OBLIGATION

(FORALL (x: real, y: real): x = 3 IMPLIES y = 27 OR y > 27 OR y < 27);

% Subtype TCC generated (line 62) for -(x - 3)

Parnas_Fig1_TCC4: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND x < 3 AND y = 27 IMPLIES -(x - 3) >= 0);

% Subtype TCC generated (line 62) for -(x - 3)

Parnas_Fig1_TCC5: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND x < 3 AND NOT y = 27 AND y > 27 IMPLIES -(x - 3) >= 0);

% Subtype TCC generated (line 62) for 2

Parnas_Fig1_TCC6: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND x < 3 AND NOT y = 27 AND NOT y > 27 AND y < 27

IMPLIES y /= 0 OR 2 >= 0);

% Subtype TCC generated (line 62) for 2

Parnas_Fig1_TCC7: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND x < 3 AND NOT y = 27 AND NOT y > 27 AND y < 27

IMPLIES (x - 3) /= 0 OR 2 >= 0);

Figure 2.1: TCCs Generated from Example Two-Dimensional Table (continues)

2.2. The PVS TABLE Construct 13

% Disjointness TCC generated for

% COND

% y = 27 -> 27 + sqrt(-(x - 3)),

% y > 27 -> y + sqrt(-(x - 3)),

% y < 27 -> y ^ 2 + (x - 3) ^ 2

% ENDCOND

Parnas_Fig1_TCC8: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND x < 3

IMPLIES NOT (y = 27 AND y > 27)

AND NOT (y = 27 AND y < 27) AND NOT (y > 27 AND y < 27));

% Coverage TCC generated for

% COND

% y = 27 -> 27 + sqrt(-(x - 3)),

% y > 27 -> y + sqrt(-(x - 3)),

% y < 27 -> y ^ 2 + (x - 3) ^ 2

% ENDCOND

Parnas_Fig1_TCC9: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND x < 3 IMPLIES y = 27 OR y > 27 OR y < 27);

% Subtype TCC generated (line 63) for x - 3

Parnas_Fig1_TCC10: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND NOT x < 3 AND x > 3 AND y = 27 IMPLIES x - 3 >= 0);

% Disjointness TCC generated for

% COND

% y = 27 -> 27 + sqrt(x - 3),

% y > 27 -> 2 * y + sqrt(x - 3),

% y < 27 -> y ^ 2 + (3 - x) ^ 2

% ENDCOND

Parnas_Fig1_TCC11: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND NOT x < 3 AND x > 3

IMPLIES NOT (y = 27 AND y > 27)

AND NOT (y = 27 AND y < 27) AND NOT (y > 27 AND y < 27));

% Coverage TCC generated for

% COND

% y = 27 -> 27 + sqrt(x - 3),

% y > 27 -> 2 * y + sqrt(x - 3),

% y < 27 -> y ^ 2 + (3 - x) ^ 2

% ENDCOND

Parnas_Fig1_TCC12: OBLIGATION

(FORALL (x: real, y: real):

NOT x = 3 AND NOT x < 3 AND x > 3 IMPLIES y = 27 OR y > 27 OR y < 27);

Figure 2.1: TCCs Generated from Example Two-Dimensional Table (continues)

14 Chapter 2. Basic Tables

% Disjointness TCC generated (line 58) for

% TABLE

% |[y = 27 | y > 27 | y < 27]|

% | x = 3 | 27 + sqrt(27) | 54 + sqrt(27) | y ^ 2 + 3 ||

% | x < 3 | 27 + sqrt(-(x - 3))

% | y + sqrt(-(x - 3)) | y ^ 2 + (x - 3) ^ 2

% ||

% | x > 3 | 27 + sqrt(x - 3) | 2 * y + sqrt(x - 3) | y ^ 2 + (3 - x) ^ 2

% ||

% ENDTABLE

Parnas_Fig1_TCC13: OBLIGATION

(FORALL (x: real):

NOT (x = 3 AND x < 3)

AND NOT (x = 3 AND x > 3) AND NOT (x < 3 AND x > 3));

% Coverage TCC generated (line 58) for

% TABLE

% |[y = 27 | y > 27 | y < 27]|

% | x = 3 | 27 + sqrt(27) | 54 + sqrt(27) | y ^ 2 + 3 ||

% | x < 3 | 27 + sqrt(-(x - 3))

% | y + sqrt(-(x - 3)) | y ^ 2 + (x - 3) ^ 2

% ||

% | x > 3 | 27 + sqrt(x - 3) | 2 * y + sqrt(x - 3) | y ^ 2 + (3 - x) ^ 2

% ||

% ENDTABLE

Parnas_Fig1_TCC14: OBLIGATION (FORALL (x: real): x = 3 OR x < 3 OR x > 3);

Figure 2.1: TCCs Generated from Example Two-Dimensional Table

2.2. The PVS TABLE Construct 15

2.2.4 Blank Entries

Some functions are not de�ned for all values of their arguments|for example, divi-

sion is not de�ned when the divisor is zero. PVS is a logic of total functions, and

does not admit such partial functions directly. However, because of the very precise

typing provided by predicate and dependent types, functions that would be partial

in simpler systems can be treated as total in PVS. For example, division in PVS is

typed so that its second argument is a nonzero real, and the function is total when

its domain is accurately speci�ed in this way. When specifying such a function by

means of tables, however, it can be useful to explicitly (though redundantly) indicate

\holes" in the domain by means of blank entries. This is particularly convenient for

two-dimensional tables on dependent types, as will be illustrated later, but we will

explain the idea with a one-dimensional example.

A standard \challenge" for speci�cation languages is the partial function subp

on the integers de�ned by

subp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endif:

This function is unde�ned if i < j (when i � j; subp(i; j) = i � j) and it is argued

that if a speci�cation language is to admit this type of de�nition, then it must

provide a treatment for partial functions [8]. PVS deals easily with this challenge

by using dependent typing to specify that the second argument to the function must

not exceed the value of its �rst argument.

subp((i: int), (j: fx: int | x <= ig)): nat

The function is total on this accurately speci�ed domain, and can then be de�ned

by means of a table as follows.

subp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =

TABLE

%-----------------------%

| i=j | 0 ||

%-----------------------%

| i>j | subp(i, j+1)+1 ||

%-----------------------%

ENDTABLE

MEASURE i - j

The coverage TCC generated from this speci�cation is the following; it is proved

trivially by the default strategy.

16 Chapter 2. Basic Tables

subp_TCC5: OBLIGATION

(FORALL (i: int, j: fx: int | x <= ig): i = j OR i > j);

This TCC shows that the \missing" case i<j does not need to be speci�ed in the

table because the types associated with i and j ensure that it can never arise.

However, it may sometimes be desirable to make this fact visually explicit in the

speci�cation, and PVS allows blank entries to appear in tables for this purpose.

subp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =

TABLE

%-----------------------%

| i<j | ||

%-----------------------%

| i=j | 0 ||

%-----------------------%

| i>j | subp(i, j+1)+1 ||

%-----------------------%

ENDTABLE

MEASURE i - j

Coverage TCCs are extended (if necessary) to ensure that blank entries are never

encountered when evaluating such a speci�cation. In this example, the TCC is

identical to that of the previous speci�cation without the blank entry.

Evaluation of tables (with or without blank entries) assumes that their TCCs

have been discharged. For example, if we had incorrectly given the previous speci-

�cation as

badsubp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =

TABLE

%--------------------------%

| i<j | 0 ||

%--------------------------%

| i=j | ||

%--------------------------%

| i>j | badsubp(i, j+1)+1 ||

%--------------------------%

ENDTABLE

MEASURE i - j

then we would obtain the following unprovable TCC.

badsubp_TCC4: OBLIGATION

(FORALL (i: int, j: fx: int | x <= ig): i < j OR i > j);

2.2. The PVS TABLE Construct 17

If we ignore the TCC and try to prove the \theorem"

bang: CLAIM badsubp(3, 3) = 99

by expanding the de�nition of badsubp, we will obtain unpredictable behavior when

we encounter the supposedly unreachable blank entry.

bang :

|-------

f1g badsubp(3, 3) = 99

Rule? (expand "badsubp")

Expanding the definition of badsubp, this simplifies to:

bang :

|-------

f1g (1 + badsubp(3, 4) = 99)

Rule?

In this case, PVS has applied the case for i>j in place of the missing case for i =

j. This example reinforces the fact that PVS speci�cations are not guaranteed to

be well-de�ned unless their TCCs have been discharged.

Blank entries may be used in conjunction with ELSE clauses. Recall that a

coverage TCC is normally not required if an ELSE clause is given; this is not so

when blank entries are present. For example, the speci�cation

subp((i: int), (j: fx: int | x <= ig)): RECURSIVE nat =

TABLE

%------------------------%

| i<j | ||

%------------------------%

| i=j | 0 ||

%------------------------%

| ELSE | subp(i, j+1)+1 ||

%------------------------%

ENDTABLE

MEASURE i - j

generates the following TCC

subp_TCC4: OBLIGATION

(FORALL (i: int, j: fx: int | x <= ig): i = j OR NOT (i < j OR i = j));

18 Chapter 2. Basic Tables

q(D, (P: bvec[7] | estimation_bound?(valD(D),valP(P)))): subrange(-2, 2) =

LET

a = -(2 - P(1) * P(0)),

b = -(2 - P(1)),

c = 1 + P(1),

d = -(1 - P(1)),

e = P(1),

Dp = bv2pattern(D),

Ptruncp = bv2pattern(P^(6,2))

IN

TABLE Ptruncp, Dp

|[000| 001| 010| 011| 100| 101| 110| 111]|

%--%

|01010| | | | | | | | 2 ||

|01001| | | | | | 2 | 2 | 2 ||

|01000| | | | | 2 | 2 | 2 | 2 ||

|00111| | | 2 | 2 | 2 | 2 | 2 | 2 ||

|00110| | 2 | 2 | 2 | 2 | 2 | 2 | 2 ||

|00101| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 ||

|00100| 2 | 2 | 2 | 2 | c | 1 | 1 | 1 ||

|00011| 2 | c | 1 | 1 | 1 | 1 | 1 | 1 ||

|00010| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 ||

|00001| 1 | 1 | 1 | 1 | e | 0 | 0 | 0 ||

|00000| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ||

|11111| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ||

|11110| -1 | -1 | d | d | 0 | 0 | 0 | 0 ||

|11101| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 ||

|11100| a | b | -1 | -1 | -1 | -1 | -1 | -1 ||

|11011| -2 | -2 | -2 | b | -1 | -1 | -1 | -1 ||

|11010| -2 | -2 | -2 | -2 | -2 | -2 | b | -1 ||

|11001| -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 ||

|11000| | | -2 | -2 | -2 | -2 | -2 | -2 ||

|10111| | | | -2 | -2 | -2 | -2 | -2 ||

|10110| | | | | | -2 | -2 | -2 ||

|10101| | | | | | | -2 | -2 ||

%--%

ENDTABLE

Figure 2.2: Quotient Lookup Table for an SRT Division Algorithm

2.2. The PVS TABLE Construct 19

to ensure that the blank entry is inaccessible.

Strictly, blank entries are unnecessary in one-dimensional tables, since the en-

tire case can always be omitted; they are extremely valuable, however, in two-

dimensional tables. For example, Figure 2.2 reproduces the quotient lookup table

from the PVS speci�cation of an SRT division algorithm [36,41]. This speci�cation

generates 23 coverage TCCs to ensure that the blank entries can never be encoun-

tered. It is worth noting that the notorious Pentium2 FDIV bug, which is estimated

to have cost Intel $500 million, was due to an SRT quotient lookup table, very sim-

ilar to that of Figure 2.2, that had bad entries in a portion of the table that was

incorrectly believed to inaccessible [34]. The TCCs of the PVS speci�cation ensure

that entries (indicated by blanks) that are believed to be inaccessible, truly are so;

veri�cation of the algorithm (which can be done largely automatically in PVS) then

ensures that all the nonblank table entries are correct [36].

2.2.5 Variations

Parnas [32] advocates tabular speci�cations and introduces several kinds of tables

for de�ning functions and relations; these have been given a formal de�nition by

Janicki [26]. The PVS TABLE construct corresponds only to what Parnas calls a

\normal" function table. However, other attributes of the PVS speci�cation lan-

guage allow speci�cation of certain alternative kinds of tables.

For example, Parnas speaks of \vector" tables when de�ning a function whose

value is a tuple, such as the following.

x < 0 x = 0 x > 0

y x+ 2 x+ 4:21 5:4 +
p
x

z 5 +
p�x x� 4 x

In this example from [33, Figure 1], the interpretation is that the value of the

function is a pair, whose �rst and second components are represented by y and z,

respectively.

Tuple types are directly available in PVS, so this function can be speci�ed by

simple tables. Both horizontal and vertical table formats for this example are illus-

trated here.

2All product and company names mentioned in this report are the trademarks of their respective

holders.

20 Chapter 2. Basic Tables

Vector_1(x:real): [real, real] =

TABLE

%---%

|[x<0 | x=0 | x>0]|

%---%

|(x+2, 5+sqrt(-x)) | (x+4+(21/100), x-4) | (5+(4/10)+sqrt(x), x) ||

%---%

ENDTABLE

Vector_2(x:real): [real, real] =

TABLE

% y z

%---%

| x<0 | (x+2, 5+sqrt(-x)) ||

%---%

| x=0 | (x+4+(21/100), x-4) ||

%---%

| x>0 | (5+(4/10)+sqrt(x), x) ||

%---%

ENDTABLE

Decimal notation is not supported in PVS so we have expressed the values 4.21 and

5.4 as fractions.

Because it is a higher-order logic with a rich type system, PVS can also deal

uniformly with certain other kinds of tables that Parnas treats specially [32]. \Re-

lation" and \predicate expression" tables, for example, are simply tables with range

type bool. Thus, the following PVS speci�cation is an example of what Parnas calls

a \relation" table (from [32, Figure 4]).

rel(x,y,z:real):bool =

TABLE

%---%

|[y>=0 & sqrt(y)<27 | y>=0 & sqrt(y)>=27 | y < 0]|

%--%

| x=3 | x^2+y^2 = z^2 | x^2 = y^2 | true ||

%--%

| x<3 | y^2 = z^2 | x^2 = z^2 | false ||

%--%

| x>3 | x^2 = z^2 | x-z > 3 | x^2+y^2 = z^2 ||

%--%

ENDTABLE

PVS can easily establish that (4, -3, 5), for example, is in the relation by using

the strategy (grind) to prove the conjecture rel(4, -3, 5). Similarly, rel(4, 9,

2.2. The PVS TABLE Construct 21

4) and rel(4,728, 4) can be proved by (grind) plus elementary properties of the

sqrt function.

Although the PVS TABLE construct can represent directly many of the kinds of

tables introduced by Parnas [32], we have not found a convenient way to represent

what Parnas calls \inverted" tables|but neither have we found a need for these.

In the next chapter, we consider rather di�erent kinds of tables from those used

by Parnas.

22

Chapter 3

AND/OR Tables and Decision

Tables

In this chapter, we �rst consider a tabular representation for Boolean expressions

that is quite di�erent to any of Parnas's tables and that does not lend itself to the

PVS TABLE construct either. We show how PVS can provide an adequate presenta-

tion of this kind of table using ordinary function application in a careful way. Then

we combine a generalization of this approach with the TABLE construct to provide

a treatment for a type of decision table that has been used for specifying avionics

requirements.

3.1 AND/OR Tables

Leveson and her colleagues use a tabular representation for Boolean expressions [29]

that is quite di�erent from any of Parnas's tables. These AND/OR tables are most

easily explained by means of an example. The following table describes some condi-

tions under which a TCAS II avionics collision avoidance system should transition

from the Threat state to the Other-Traffic state [29, Figure 32].

OR

Alt-Reportings�202 in state Lost T T T -

A Bearing-Validm�298 F - T -

N Other-Range-Validv�218 = True - F T -

D Proximate-Traffic-Conditionm�317 - - F -

Potential-Threat-Conditionm�314 - - F -

Other-Air-Statuss�202 in state On-Ground - - - T

23

24 Chapter 3. AND/OR Tables and Decision Tables

The idea is that each of the OR columns speci�es one of the conditions under

which the transition should be taken: the condition represented by a column is true if

each of the expressions represented by those rows having a T in that column are true,

and those having an F in the column are false (dashes indicate \don't care"). Thus,

the condition represented by the �rst column is true when Alt-Reportings�202

is in state Lost and Bearing-Validm�298 is false. The conditions represented

by the individual columns are disjoined (ORed together) to give the full set of

conditions under which the transition should occur. Since the individual entries in

each column are conjoined (ANDed together), the full AND/OR table is a structured

presentation of a Boolean expression in disjunctive normal form (a disjunction of

conjunctions). Leveson's AND/OR tables are quite e�ective for Boolean expressions

that are conveniently expressed in disjunctive normal form; they are less so for

expressions that are most naturally expressed in terms of implication, equivalence,

or exclusive-or.

The TABLE construct of PVS is not well matched to the representation of

AND/OR tables. We show how other constructs of PVS can be used to give an

adequate representation for these tables. To describe the approach, we begin with

the following simpli�ed example of an AND/OR table.

OR

A Expr 1 T - F

N Expr 2 - F T

D Expr 3 - - F

We can transpose this table to obtain the following equivalent representation.

AND

Expr 1 Expr 2 Expr 3

O T - -

R - F -

F T F

Written in this form, we can think of each row as a list of values (e.g., (F, T, F)

in the case the bottom row) to be checked against the list of expressions (Expr 1,

Expr 2, Expr 3). Now, an existing construction in PVS that uses a list of expres-

sions is function application: the arguments to a function application are written

as a list of expressions. So we could hypothesize a function X that takes such a list

as its arguments (e.g., X(F , T , F)) and returns true if Expr 1 is F and Expr 2

is T and Expr 3 is F. Then we could write the table something like the following,

which does have a fairly acceptable tabular layout.1

1In the PVS versions, we use ~ instead of - to indicate \don't care." This is because there is an

ine�ciency in PVS name resolution that is exponential in the number of overloadings (and - has

3.1. AND/OR Tables 25

1
X(T , ~ , ~) OR

X(~ , F , ~) OR

X(F , T , F)

We now need to consider the speci�cation of X, and of T, F, and ~. The bottom row

of the table suggests that we might think of T and F as synonyms for true and false,

respectively, and then X could be given as follows.

X(x, y, z: bool): bool = Expr_1 = x AND Expr_2 = y AND Expr_3 = z

The trouble with this idea is that it does not extend to the \don't care" case: what

truth value can we assign to ~? A more sophisticated idea is to treat T, F, and ~ as

the members of an enumerated type called Extended Bool and to provide a function

cmp that compares an Extended Bool against a Boolean.

Extended_Bool: TYPE = f T, F, ~ g

cmp(e: Extended_Bool, b:bool): bool =

CASES e OF

T: b,

F: NOT b,

~: TRUE

ENDCASES

X(x, y, z: Extended_Bool): bool =

cmp(Expr_1, x) AND cmp(Expr_2, y) AND cmp(Expr_3, z)

The question now is: how do we supply values for the Expr i? They must surely

be the arguments to the predicate (called Test, say) whose behavior is de�ned by the

speci�cation in speci�cation box 1 on page 25. We can establish this association by

moving the de�nition of the function X inside a LET clause in the following de�nition

of the function Test.

Test(Expr_1, Expr_2, Expr_3: bool):bool =

LET

X(x, y, z: Extended_Bool): bool =

cmp(x, Expr_1) AND cmp(y, Expr_2) AND cmp(z, Expr_3)

IN

X(T , ~ , ~) OR

X(~ , F , ~) OR

X(F , T , F)

14 overloadings, whereas ~ has only two). This ine�ciency will be eliminated in a future release of

PVS.

26 Chapter 3. AND/OR Tables and Decision Tables

Unfortunately, PVS does not at present allow the applicative kind of function de�-

nition inside a LET clause,2 so we must de�ne X with a LAMBDA as follows.

Test(Expr_1, Expr_2, Expr_3: bool):bool =

LET

X = LAMBDA (x, y, z: Extended_Bool):

cmp(x, Expr_1) AND cmp(y, Expr_2) AND cmp(z, Expr_3)

IN

X(T , ~ , ~) OR

X(~ , F , ~) OR

X(F , T , F)

Given this speci�cation, PVS can easily prove conjectures about Test (e.g.,

Test(FALSE, FALSE, TRUE) is true) using the single command (grind).

Following this model, we can construct a PVS rendition of the AND/OR table

that was used to introduce this section (recall page 23). Notice how this PVS

speci�cation (for the predicate called Transition shown in Figure 3.1) builds the

expressions Alt Reporting = Lost and Other Air Status = On Ground into the

de�nition of the function X. We will see di�erent ways to do this in the next section.

The speci�cation uses comments and careful layout to provide a tabular appearance,

and to suggest the connection between the expressions in the de�nition of X and the

columns of the table. The example conjecture test (which probes the second row

of the table) is easily proved by the single command (grind).

In the requirements speci�cation method developed by Leveson and her col-

leagues [29], AND/OR tables are used to indicate the conditions under which state

transitions should occur. The states and the transitions are speci�ed separately,

using Statechart-like diagrams for the latter. For that context, Heimdahl has de-

veloped tools for checking completeness and consistency of transition conditions

described in AND/OR tables [16,17]. We can reproduce these checks in PVS if the

speci�cation method is reformulated so that the transitions are speci�ed by means

of tables, rather than graphically. An existing method that has this character is

due to Lance Sherry [39]. The next section describes a PVS treatment of Sherry's

decision tables.

2It will in a future release.

3.1. AND/OR Tables 27

status: TYPE+

Lost, On_Ground, Other: status

Alt_Reporting, Other_Air_Status: VAR status

Bearing_Valid, Other_Range_Valid, Proximate_Traffic_Condition,

Potential_Threat_Condition: VAR bool

Transition(Alt_Reporting,Bearing_Valid, Other_Range_Valid,

Proximate_Traffic_Condition, Potential_Threat_Condition,

Other_Air_Status): bool =

LET

X = LAMBDA (x1,x2,x3,x4,x5,x6: Extended_Bool):

(cmp(Alt_Reporting = Lost, x1) &

cmp(Bearing_Valid, x2) &

cmp(Other_Range_Valid, x3) &

cmp(Proximate_Traffic_Condition, x4) &

cmp(Potential_Threat_Condition, x5) &

cmp(Other_Air_Status = On_Ground, x6))

% | | | | | |

% | | | | | |

IN % v v v v v v

%---|---|---|---|---|---%

X(T , F , ~ , ~ , ~ , ~) OR

%---|---|---|---|---|---%

X(T , ~ , F , ~ , ~ , ~) OR

%---|---|---|---|---|---%

X(T , T , T , F , F , ~) OR

%---|---|---|---|---|---%

X(~ , ~ , ~ , ~ , ~ , T)

%---|---|---|---|---|---%

test: LEMMA Transition(Lost, TRUE, FALSE, TRUE, TRUE, Other)

Figure 3.1: PVS Rendition of the AND/OR Table from Page 23

28 Chapter 3. AND/OR Tables and Decision Tables

3.2 Decision Tables

Whereas AND/OR tables represent Boolean expressions, decision tables represent a

collection of such expressions, together with the \decision" or output to be generated

when a particular expression is true. There are many kinds of decision tables; the

ones considered here are from a requirements engineering methodology developed for

avionics systems by Lance Sherry of Honeywell [39], and given mechanized support

in TableWise developed by Doug Hoover and others at ORA [23].

Figure 3.2 shows a simple decision table (taken from [23, Table 2]).3 This ta-

ble describes the conditions under which each of the four \operational procedures"

Takeoff, Climb, Climb Int Level, and Cruise should be selected. The subtable

beneath the name of each operational procedure can be interpreted rather like an

AND/OR table, except that the input variables can have types other than Boolean

(and * instead of - is used for \don't care"). For example, the third and fourth

columns in the body of the table indicate that the operational procedure Climb

should be used if the Flightphase is climb, AC Alt is either equal or greater than

Acc Alt, and either Alt Capt Hold is false, or it is true and Alt Target is greater

than prev Alt Target.

Operational Procedure

Input Variables Takeo� Climb Climb Int level Cruise

Flightphase climb climb climb climb climb cruise

AC Alt > 400 true true * * * *

compare(AC Alt,

Acc Alt)
LT LT GE GE * GT

Alt Capt Hold false true false true true true

compare(Alt Target,

prev Alt Target)
* GT * GT * EQ

Figure 3.2: A Simple Decision Table

We can model this decision table by combining the PVS TABLE construct, with a

generalization of the treatment provided for AND/OR tables in the previous section.

That treatment used a function X to give an interpretation to a column (transposed

3This table is a simpli�ed version of one appearing in Sherry's US patent [38, Appendix B].

Sherry's original contains several inconsistencies and incompletenesses of the kind also present in

this simple example.

3.2. Decision Tables 29

to a row) of an AND/OR table, such as X(T, ~, F); now we need to generalize this

treatment to give an interpretation to a construct like

X(climb, true, LT, false, *)

(from the �rst column of Figure 3.2). The previous treatment considered the argu-

ments to X as extended Boolean constants to be compared with the corresponding

input value using a function cmp. This treatment is satisfactory when all the argu-

ments to X are of this same type, but it becomes rather clumsy when, as here, they

can all be of di�erent types (we would need a separate cmp function for each type).

A better solution is to treat the arguments to X as predicates rather than constants,

as shown in Figure 3.3.

tablewise: THEORY

BEGIN

b:VAR bool

true(b): bool = b

false(b): bool = NOT b ;

*(b): bool = TRUE

x,y:VAR nat

GT(x, y): bool = x > y

LT(x, y): bool = x < y

EQ(x, y): bool = x = y

GE(x, y): bool = x >= y

LE(x, y): bool = x <= y ;

*(x, y): bool = TRUE

operational_procedures: TYPE = fTakeoff, Climb, Climb_Int_Level, Cruiseg

flight_phases: TYPE = fclimb, cruiseg

Flightphase: VAR flight_phases

AC_Alt, Acc_Alt, Alt_Target, prev_Alt_Target: VAR nat

Alt_Capt_Hold: VAR bool

Figure 3.3: Preliminary PVS Constructions for the Decision Table in Figure 3.2

Here, true and false, for example, are not constants to be compared against

the value of an expression such as AC Alt > 400, but predicates that, when applied

to this expression, indicate whether it is true or false, respectively. The symbol *,

which in this example represents \don't care," is a predicate that always returns

30 Chapter 3. AND/OR Tables and Decision Tables

true. Slightly more complex are the predicates such as GT, which takes a pair of

arguments and returns true if the �rst is greater than the second. Similarly, climb?

and cruise? are predicates that can be applied to Flightphase and return true

just in case it has the value climb or cruise, respectively.4 The PVS speci�cation

corresponding to Figure 3.2 continues in Figure 3.4, where this generalization of

decision_table(Flightphase,

AC_Alt,

Acc_Alt,

Alt_Target,

prev_Alt_Target,

Alt_Capt_Hold): operational_procedures =

LET X = (LAMBDA (a: pred[flight_phases]),

(b: pred[bool]),

(c: pred[[nat,nat]]),

(d: pred[bool]),

(e: pred[[nat,nat]]):

a(Flightphase) &

b(AC_Alt > 400) &

c(AC_Alt,Acc_Alt) &

d(Alt_Capt_Hold) &

e(Alt_Target,prev_Alt_Target)) IN TABLE

% | | | | |

% | | | | |

% | | | | |

% v v v v v Operational Procedure

%----------|-------|-------|-------|-------|------------- ----%

| X(climb? , true , LT , false , *) | Takeoff ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , true , LT , true , GT) | Takeoff ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , GE , false , *) | Climb ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , GE , true , GT) | Climb ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , * , true , *) | Climb_Int_Level ||

%----------|-------|-------|-------|-------|------------------%

| X(cruise?, * , GT , true , EQ) | Cruise ||

%----------|-------|-------|-------|-------|------------------%

ENDTABLE

END tablewise

Figure 3.4: PVS Rendition of the Decision Table in Figure 3.2

4Note that flight phases is speci�ed as the enumeration type fclimb, cruiseg, which auto-

matically creates the predicates climb? and cruise?.

3.2. Decision Tables 31

the technique previously used for AND/OR tables is combined with use of the PVS

TABLE construct.

Because the speci�cation of Figure 3.4 uses the TABLE construct, PVS generates

disjointness and coverage TCCs. The disjointness TCC (reformatted to �t the page)

is shown in Figure 3.5.

% Disjointness TCC generated (line 44) for

% TABLE

% | X(climb?, TRUE, LT, FALSE, *) | Takeoff ||

% | X(climb?, TRUE, LT, TRUE, GT) | Takeoff ||

% | X(climb?, *, GE, FALSE, *) | Climb ||

% | X(climb?, *, GE, TRUE, GT) | Climb ||

% | X(climb?, *, *, TRUE, *) | Climb_Int_Level ||

% | X(cruise?, *, GT, TRUE, EQ) | Cruise ||

% ENDTABLE

% unfinished

decision_table_TCC1: OBLIGATION

(FORALL (X, AC_Alt, Acc_Alt, Alt_Capt_Hold,

Alt_Target, Flightphase, prev_Alt_Target):

X = (LAMBDA (a: pred[flight_phases]),

(b: pred[bool]),

(c: pred[[nat, nat]]), (d: pred[bool]), (e: pred[[nat, nat]]):

a(Flightphase)

& b(AC_Alt > 400)

& c(AC_Alt, Acc_Alt)

& d(Alt_Capt_Hold) & e(Alt_Target, prev_Alt_Target))

IMPLIES NOT (X(climb?, TRUE, LT, FALSE, *) AND X(climb?, *, GE, FALSE, *))

AND NOT (X(climb?, TRUE, LT, FALSE, *) AND X(climb?, *, GE, TRUE, GT))

AND NOT (X(climb?, TRUE, LT, FALSE, *) AND X(climb?, *, *, TRUE, *))

AND NOT (X(climb?, TRUE, LT, FALSE, *) AND X(cruise?, *, GT, TRUE, EQ))

AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(climb?, *, GE, FALSE, *))

AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(climb?, *, GE, TRUE, GT))

AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(climb?, *, *, TRUE, *))

AND NOT (X(climb?, TRUE, LT, TRUE, GT) AND X(cruise?, *, GT, TRUE, EQ))

AND NOT (X(climb?, *, GE, FALSE, *) AND X(climb?, *, *, TRUE, *))

AND NOT (X(climb?, *, GE, FALSE, *) AND X(cruise?, *, GT, TRUE, EQ))

AND NOT (X(climb?, *, GE, TRUE, GT) AND X(climb?, *, *, TRUE, *))

AND NOT (X(climb?, *, GE, TRUE, GT) AND X(cruise?, *, GT, TRUE, EQ))

AND NOT (X(climb?, *, *, TRUE, *) AND X(cruise?, *, GT, TRUE, EQ)));

Figure 3.5: Disjointness TCC for the Speci�cation of Figure 3.4

The PVS proof command (GRIND :EXCLUDE ("<" ">" "<=" ">=")) discharges 11

of the 13 cases in the TCC, but fails on two of them. After eliminating irrelevant def-

32 Chapter 3. AND/OR Tables and Decision Tables

initions with the command (HIDE -1 -2 -3 -4 -5), these reduce to the following

subgoals.

decision_table_TCC1.1 :

[-1] climb?(Flightphase!1)

[-2] AC_Alt!1 > 400

[-3] AC_Alt!1 < Acc_Alt!1

[-4] Alt_Capt_Hold!1

[-5] Alt_Target!1 > prev_Alt_Target!1

|-------

Rule? (POSTPONE)

decision_table_TCC1.2 :

[-1] climb?(Flightphase!1)

[-2] Alt_Capt_Hold!1

[-3] AC_Alt!1 >= Acc_Alt!1

[-4] Alt_Target!1 > prev_Alt_Target!1

|-------

Rule?

Since these sequents have nothing below the turnstile line, the only way they

could be true is if the formulas above the line are mutually contradictory. PVS is

unable to establish such contradictions, and thereby identi�es
aws in the original

table corresponding to the cases where all the formulas above the line in each sequent

are true. The �rst sequent identi�es a circumstance that satis�es both columns 2 and

5 of the original table in Figure 3.2 (corresponding to rows 2 and 5 of the PVS table

in Figure 3.4), thereby leading to the con
icting selection of two di�erent operational

procedures (Takeoff and Climb Int Level). The second sequent identi�es a similar

con
ict between columns 4 and 5. These
aws are identical to those identi�ed by

the special-purpose tool TableWise [23, Table 3].

The coverage TCC generated from the speci�cation of Figure 3.4 is shown in

Figure 3.6. The same proof commands as those used for the disjointness TCC pro-

duce the four unprovable subgoals shown in Figure 3.7. As before, PVS's inability to

discharge these proof obligations identi�es
aws in the speci�cation. These sequents

have nothing above the turnstile line, so for them to be true it is enough that just

one of the formulas below the line should be true in each case. Since PVS cannot

establish this, we must consider the case when all the formulas below the line in

each sequent are false. The �rst sequent, for example, identi�es the failure to select

an operational procedure when AC Alt is not greater than 400, Alt Capt Hold is

3.2. Decision Tables 33

% Coverage TCC generated (line 44) for

% TABLE

% | X(climb?, TRUE, LT, FALSE, *) | Takeoff ||

% | X(climb?, TRUE, LT, TRUE, GT) | Takeoff ||

% | X(climb?, *, GE, FALSE, *) | Climb ||

% | X(climb?, *, GE, TRUE, GT) | Climb ||

% | X(climb?, *, *, TRUE, *) | Climb_Int_Level ||

% | X(cruise?, *, GT, TRUE, EQ) | Cruise ||

% ENDTABLE

% unfinished

decision_table_TCC2: OBLIGATION

(FORALL (X, AC_Alt, Acc_Alt, Alt_Capt_Hold,

Alt_Target, Flightphase, prev_Alt_Target):

X = (LAMBDA (a: pred[flight_phases]),

(b: pred[bool]),

(c: pred[[nat, nat]]), (d: pred[bool]), (e: pred[[nat, nat]]):

a(Flightphase)

& b(AC_Alt > 400)

& c(AC_Alt, Acc_Alt)

& d(Alt_Capt_Hold) & e(Alt_Target, prev_Alt_Target))

IMPLIES X(climb?, TRUE, LT, FALSE, *)

OR X(climb?, TRUE, LT, TRUE, GT)

OR X(climb?, *, GE, FALSE, *)

OR X(climb?, *, GE, TRUE, GT)

OR X(climb?, *, *, TRUE, *)

OR X(cruise?, *, GT, TRUE, EQ));

Figure 3.6: Coverage TCC for the Speci�cation of Figure 3.4

34 Chapter 3. AND/OR Tables and Decision Tables

decision_table_TCC2.1 :

|-------

[1] AC_Alt!1 > 400

[2] Alt_Capt_Hold!1

[3] AC_Alt!1 >= Acc_Alt!1

Rule? (POSTPONE)

Postponing decision_table_TCC2.1.

decision_table_TCC2.2 :

|-------

[1] climb?(Flightphase!1)

[2] Alt_Target!1 = prev_Alt_Target!1

Rule? (POSTPONE)

Postponing decision_table_TCC2.2.

decision_table_TCC2.3 :

|-------

[1] climb?(Flightphase!1)

[2] AC_Alt!1 > Acc_Alt!1

Rule? (POSTPONE)

Postponing decision_table_TCC2.3.

decision_table_TCC2.4 :

|-------

[1] climb?(Flightphase!1)

[2] Alt_Capt_Hold!1

Rule?

Figure 3.7: False Subgoals from the Coverage TCC of Figure 3.6

3.2. Decision Tables 35

false, and AC Alt is less than Acc Alt. As before, the four
aws identi�ed by these

false subgoals are identical to those identi�ed by the special-purpose tool Table-

Wise [23, Table 4].

Unlike PVS, TableWise presents the anomalies that it discovers in a tabular form

similar to that of the original decision table; TableWise can also generate executable

Ada code and English language documentation from decision tables. These bene�ts

are representative of those that can be achieved with a special-purpose tool. On the

other hand, PVS's more powerful deductive capabilities also provide bene�ts. For

example, PVS can settle disjointness and coverage TCCs that depend on properties

more general than the simple Boolean and arithmetic relations built in to Table-

Wise and similar tools. Heimdahl, who with Leveson developed a completeness and

consistency checking tool for the AND/OR tables of RSML [17], describes spuri-

ous error reports when that tool was applied to TCAS II [16]. These were due to

the presence of arithmetic and de�ned functions whose properties are beyond the

reach of the BDD-based5 tautology checker incorporated in the tool. As Heimdahl

notes [16, page 81], a theorem prover is needed to settle such properties.

A theorem prover such as PVS can also examine questions beyond simple com-

pleteness and consistency. For example, Figure 3.8 presents a speci�cation that

corrects the incompleteness and inconsistencies detected in the speci�cation of Fig-

ure 3.4. (The incompleteness is remedied by adding an ELSE clause, and the in-

consistencies by replacing the \don't care" entries in the second and third columns

of row 5 by false and LT, respectively.) Since the single TCC generated by this

speci�cation is provable (using (grind)), we may examine additional properties of

the function decision table2. To check that the speci�cation matches our intent,

we can use conjectures that we believe to be true as \challenges." For example, we

may believe that when AC Alt = Acc Alt, the operational procedure selected should

match the Flightphase. We can check this in the case that the Flightphase is

cruise using the following challenge.

test: THEOREM AC_Alt = Acc_Alt =>

decision_table2(cruise, AC_Alt, Acc_Alt,

Alt_Target, prev_Alt_Target, Alt_Capt_Hold) = Cruise

This is easily proved using (grind).

However, when we try the corresponding challenge for the case where

Flightphase is climb,

test2: THEOREM AC_Alt = Acc_Alt =>

decision_table2(climb, AC_Alt, Acc_Alt,

Alt_Target, prev_Alt_Target, Alt_Capt_Hold) = Climb

5Ordered Binary Decision Diagrams (BDDs) are a very e�cient representation for reasoning

about Boolean functions and propositional calculus [5].

36 Chapter 3. AND/OR Tables and Decision Tables

decision_table2(Flightphase,

AC_Alt,

Acc_Alt,

Alt_Target,

prev_Alt_Target,

Alt_Capt_Hold): operational_procedures =

LET X = (LAMBDA (a: pred[flight_phases]),

(b: pred[bool]),

(c: pred[[nat,nat]]),

(d: pred[bool]),

(e: pred[[nat,nat]]):

a(Flightphase) &

b(AC_Alt > 400) &

c(AC_Alt,Acc_Alt) &

d(Alt_Capt_Hold) &

e(Alt_Target,prev_Alt_Target)) IN TABLE

% | | | | |

% | | | | |

% | | | | |

% v v v v v Operational Procedure

%----------|-------|-------|-------|-------|------------- ----%

| X(climb? , true , LT , false , *) | Takeoff ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , true , LT , true , GT) | Takeoff ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , GE , false , *) | Climb ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , * , GE , true , GT) | Climb ||

%----------|-------|-------|-------|-------|------------------%

| X(climb? , false , LT , true , *) | Climb_Int_Level ||

%----------|-------|-------|-------|-------|------------------%

| X(cruise?, * , GT , true , EQ) | Cruise ||

%----------|-------|-------|-------|-------|------------------%

| ELSE | Cruise ||

%--|------------------%

ENDTABLE

END tablewise

Figure 3.8: Corrected Version of the Decision Table in Figure 3.4

3.2. Decision Tables 37

we discover that (grind) produces the following unproven goal.

test2 :

f-1g Acc_Alt!1 >= 0

f-2g Alt_Target!1 >= 0

f-3g prev_Alt_Target!1 >= 0

f-4g AC_Alt!1 = Acc_Alt!1

f-5g Alt_Capt_Hold!1

|-------

f1g Alt_Target!1 > prev_Alt_Target!1

Rule?

The �rst three formulas are simply type predicates for the natural numbers con-

cerned, and the next is the hypothesis to this challenge, but formulas -5 and 1 re-

veal that we have overlooked the case where Alt Capt Hold is true and Alt Target

<= prev Alt Target (the latter condition is negated because it appears below the

turnstile line). Further examination of the table (or another mechanically checked

challenge) will disclose that the value of the function is not Climb but Cruise in

this case, thereby exposing a
aw in either our expectations or our formalization

of this function. Mechanically supported challenges of this kind illustrate the util-

ity of undertaking the analysis of tabular speci�cations in a context that provides

theorem proving. Special-purpose tools for tabular speci�cations generally provide

only completeness and consistency checking, and perhaps some form of simulation.

Such tools would help identify the
aw described only if we happened to choose to

simulate a case where Alt Capt Hold is true and Alt Target <= prev Alt Target.

Decision tables provide a way to specify the selection of operational procedures

to be executed at each step. However, the model of computation that repeatedly

performs these selection and execution steps is understood informally and is not

explicit in the PVS speci�cations. Consequently, it is not possible to pose and ex-

amine overall system properties|such as whether a certain property is invariant, or

another is reachable|without formalizing more of the underlying model of compu-

tation. In the following chapter, we will do this for the requirements speci�cation

methodology known as SCR.

38

Chapter 4

State Transition Systems and

SCR Requirements

Speci�cations

A common way to model distributed, concurrent, or reactive systems is by means

of transition relations. The instantaneous state of the system is represented by an

assignment of values to its variables. As it executes, the system progresses from one

state to another, and the transition relation speci�es the possible successors to each

state. The sequence of states visited in one run of the system is called a trace; the

set of all traces is called the behavior of the system.

Usually, the transition relation for a system is not speci�ed monolithically, but

as the interaction of several subsystems operating in parallel. Each subsystem will

be characterized by its own transition relation and the composite, overall transition

relation can then be de�ned as either the disjunction of the individual relations

(\interleaving" concurrency) or their conjunction1 (\true" concurrency).

Veri�cation questions one might ask of transition relations include whether the

behavior induced by one (regarded as an implementation) implies that of another

(regarded as a speci�cation), whether a certain property is true of all reachable states

(i.e., an invariant), and whether a state having a certain property is reachable on

some or all traces starting from some given state (these are examples of \liveness"

properties). Many such properties of sets of traces can be speci�ed compactly by

means of temporal logic. To ask whether the behavior speci�ed by a certain tran-

sition relation satis�es a property speci�ed by a certain formula of temporal logic

can be viewed as asking whether the relation is a Kripke model of the formula. For

certain temporal logics and for transition relations that induce a �nite state space,

1The individual relations must usually allow \stuttering" (i.e., no change) steps in this case.

39

40 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

this model checking question can be decided very e�ciently (i.e., in time linear in

the length of the temporal logic formula and the number of states in the transition

system) by a rather sophisticated form of brute force search. The invention and pop-

ularization of this approach is due to Edmund Clarke and his students [6,9,10]. For

certain classes of systems and properties, model checking is an attractive alterna-

tive, or adjunct, to veri�cation by theorem proving, because of its largely automatic

character.

Using an e�cient decision procedure2 based on BDDs for a logic known as the

Park's �-calculus (this is basically quanti�ed Boolean logic with least and greatest

�xpoint operators [31]), PVS provides model checking for a temporal logic known

as Computation Tree Logic (CTL) and transition relations de�ned on heriditarily

�nite types [35].3

Here, we consider the use of PVS to examine transition relations derived from the

Naval Research Laboratory's SCR method for requirements speci�cation [11]. We

begin by considering how PVS can represent certain aspects of SCR speci�cations

in a natural manner, and how it can check those speci�cations for well-formedness.

This treatment builds directly on that developed in the previous chapter. We then

consider use of PVS's model checker to examine application properties of SCR spec-

i�cations. Finally, we consider speci�cations composed of more than one transition

relation and use PVS's model checker to decide equivalence of the behaviors induced

by di�erent transition relations.

4.1 Representing SCR Speci�cations in PVS

In the SCR method [19], a system is described in terms of state machines that in-

teract with their environment by periodically sampling the values of monitored (i.e.,

input) variables and calculating values to be assigned to controlled (i.e., output)

variables. The states of an individual state machine are called modes. A condi-

tion is a predicate on the monitored variables; an event occurs when a monitored

variable changes value. The mode transitions of an individual state machine are

triggered by events, or by conditioned events|these are events that occur while

certain conditions hold constant. Mode transitions are generally speci�ed by a table

such as the one shown in Figure 4.1. Complex systems are de�ned by several state

2This procedure, and also the BDD-based propositional simpli�er invoked by PVS's (bddsimp)

command, were provided by Geert Janssen of the Electrical Engineering Department of Eindhoven

University of Technology in the Netherlands [27].
3This capability is similar to that of the SMV model checker [30]. Note that the �-calculus

is strictly more expressive than CTL, and is also used to de�ne \fair" versions of the CTL oper-

ators within PVS. We are currently investigating the extension of PVS's �-calulus-based model

checking to linear-time temporal logic (CTL is a \branching-time" logic [28]), and to language

containment [15].

4.1. Representing SCR Speci�cations in PVS 41

Current Conditions Next

Mode Ignited Running Toofast Brake Activate Deactivate Resume Mode

O� @T - - - - - - Inactive

Inactive @F - - - - - - O�

T T - F @T - - Cruise

Cruise @F - - - - - - O�

- @F - - - - - Inactive

- - @T - - - - Inactive

- - - @T - - - Override

- - - - - @T - Override

Override @F - - - - - - O�

- @F - - - - - Inactive

T T - F @T - - Cruise

T T - F - - @T Cruise

Figure 4.1: Original Mode Transition Table for Cruise Control

machines operating in parallel and will have several such mode transition tables.

Also, in such cases, the conditions in one table may refer to the modes of another,

and events may include mode transitions of other state machines. These extensions

require elaborations of the treatment given here, and we ignore them for brevity.

However, we do consider interacting state machines in Section 4.3.

The mode transition table of Figure 4.1, taken from Atlee and Gannon [3, Table

2],4 describes an automobile cruise control system.5 This system has four modes:

off, inactive, cruise, and override. The system is in exactly one of these four

modes at all times. The system starts in the off mode, which represents the case

where the car's ignition is o�. The inactive mode stands for the case where the

car's ignition is on, but the cruise control is o�. The cruise mode is the case where

both ignition and cruise control are on, and the cruise control is actually controlling

the vehicle's speed. Finally, the override mode applies when both the ignition and

cruise control are on, but the cruise control is not controlling the vehicle's speed.

The table of Figure 4.1 uses the following conditions on the system's monitored

variables.

Ignited: The ignition is on.

Running: The engine is running.

Toofast: The vehicle speed is above that which the system can control.

4The same example is used in two papers by Atlee and Gannon [3, Tables 2 and 3], [4, Tables IV

and V], and one by Atlee and Buckley [2, Figure 4]; however, the SCR tables are slightly di�erent

in each paper.
5This description does not resemble any real cruise control; we use it because it has been studied

by others and thereby facilitates comparison between our methods and theirs.

42 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

Brake: The brake is being applied.

Activate: The cruise control lever is set to the \activate" position.

Deactivate: The cruise control level is set to the \deactivate" position.

Resume: The cruise control level is set to the \resume" position.

An @T entry in the mode transition table indicates an event where the condition

in that column goes from false to true. For example, the @T in the �rst column

of the �rst row of the table signi�es an event that ignited goes from false to

true. An @F entry similarly indicates an event that the condition corresponding

to that column goes from true to false. The simple entries T and F indicate that

the condition in their column remains true or false, respectively. The rows of the

mode transition table specify conditioned events that trigger their associated mode

transitions. For example, the third row speci�es that a transition from the inactive

to the cruise mode takes place when an activate event occurs while ignited and

running remain true and brake remains false (the dashes indicate \don't care"

conditions). The system remains in its current mode until an event causes it to

transition to another mode.

To specify this system in PVS, we �rst need to model the basic constructs of

the SCR method, such as the notions of events and conditions, and the meaning

of notations such as @T. The notions of the SCR method are de�ned relative to

the input (monitored) and output (controlled) variables, and the system modes: a

condition, for example, is formally a predicate on the inputs. We therefore specify

the SCR constructs in a theory that is parameterized by the input, mode, and

output types. This theory begins as follows.

scr[input, mode, output: TYPE]: THEORY

BEGIN

condition: TYPE = pred[input]

event: TYPE = pred[[input, input]]

state: TYPE = [# mode: mode, vars: input #]

: : :

It speci�es that a condition is a predicate on inputs, while an event is a predicate

on pairs of inputs (or, equivalently, a relation on inputs).6 The instantaneous

system state is a record composed of the current mode and current values of the

inputs.

It turns out to be very convenient to be able to apply a condition to a state,

with the interpretation that the condition is actually to be applied to the inputs of

6In the declaration for the event type, the outer pair of brackets encloses the parameter to the

pred type-constructor; the inner pair is the tuple-type constructor.

4.1. Representing SCR Speci�cations in PVS 43

that state. The higher-order function liftcmakes it possible to do this in a uniform

fashion: if cnd is a condition, then liftc(cnd) is a predicate on states that has

the desired behavior (i.e., it applies cnd to the vars component of the state). By

further declaring liftc to be a CONVERSION, we tell the PVS typechecker that it

may insert an application of liftc wherever it will turn a type-incorrect application

into a type-correct one. Thus, we can write cnd(s), where cnd is a condition and

s is a state, and PVS will automatically convert this to liftc(cnd)(s).

liftc(cnd:condition): pred[state] = LAMBDA (s:state): cnd(vars(s))

CONVERSION liftc

liftm(mde: pred[mode]): pred[state] = LAMBDA (s:state): mde(mode(s))

CONVERSION liftm

The conversion liftm is de�ned similarly for predicates on modes.

A trace is a sequence of states whose adjacent members are related by some

transition relation. The important item to capture here is the notion of transition

relation.

transition_relation: TYPE = pred[[state, state]]

This says that a transition relation is a predicate on pairs of states (i.e., a

relation on states).

The instantaneous values of the input variables are determined by the environ-

ment and are not under our control. When we specify the behavior of a particular

state machine, we must be careful, therefore, to do so in a way that does not con-

strain how input variables may change from one state to another.7 Hence, we do

not specify the transition relation directly (since it would then be hard to check that

we were not constraining the way in which inputs could change from one state to

another), but do so implicitly by means of a mode table that allows us to specify

only the part of the system that is under our control (i.e., in this case, just the

modes).

mode_table: TYPE = [mode, input, input -> mode]

A mode table speci�es a new mode for the system as a function of its previous

mode, and previous and current inputs. We can then specify a function trans that

constructs a transition relation from a mode table by specifying that two states

s and t are in the relation whenever the mode of t equals that required by the mode

table when given the mode of s and the inputs of s and t.

7It is acceptable to constrain the way input variables change if this is an explicit property or as-

sumption about the environment (we will see an example of this shortly in the axiom engine prop);

it is not acceptable to do it accidentally while specifying the part of the system that we intend to

implement.

44 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

trans(mt: mode_table): transition_relation =

(LAMBDA (s,t: state): mode(t) = mt(mode(s), vars(s), vars(t)))

An output table speci�es the current output in a manner similar to that of

a mode table. For brevity, we will not specify particular output tables for our

examples.

output_table: TYPE = [mode, input, input -> output]

To specify a particular mode table such as Figure 4.1, we need to de�ne the

operators such as @T that appear within it. The operator @T in the column for

ignited really stands for @T(ignited), and represents the event where the condition

ignited goes from false to true. Thus, @T is a function from conditions to events.

We say that such functions have type event constructor, or EC for short.

event_constructor: TYPE = [condition -> event]

EC: TYPE = event_constructor

Now if P is a condition, @T(P) is the event that is true of two sets of input

values p and q if P goes from false to true between them: that is, if P(p) is false

and P(q) is true. We can de�ne this in PVS as follows (because @ cannot be used

in a PVS identi�er we use atT instead of @T). Observe the explicitly higher-order

character of this de�nition.

p,q: VAR input

P: VAR condition

atT(P)(p,q): bool = NOT P(p) & P(q) % @T(P)

We can de�ne atF (i.e., @F) dually, and similarly the transition constructors T and

F, which are true if their argument condition P remains true (resp. false) in the

transition from p to q. We will also need the \don't care" transition constructor dc,

which is always true.

atF(P)(p,q): bool = P(p) & NOT P(q) % @F(P)

T(P)(p,q): bool = P(p) & P(q)

F(P)(p,q): bool = NOT P(p) & NOT P(q)

dc(P)(p,q): bool = true % don't care

This gives us all the generic constructions we need for the time being, and we

can proceed to specify the particular mode transition table given in Figure 4.1.

To begin, we need to specify the inputs and the system modes for this example.

Among the inputs, we know that there is a cruise control lever that can take on

three positions: activate, deactivate, and resume. We can specify these values

as the components of a PVS enumerated type, as follows.

4.1. Representing SCR Speci�cations in PVS 45

cruise: THEORY

BEGIN

lever_pos: TYPE = factivate, deactivate, resumeg

Similarly, the engine can be in one of three states; off, running, and an intermediate

state where the ignition is on but the engine is not running.

engine_state: TYPE = f off, ignition, running g

The input to the system will be a record of several �elds: as well as the cruise

control lever position and engine state, we need Boolean-valued �elds that record

whether the vehicle is going toofast, and whether the brake is on.

monitored_vars: TYPE = [#

engine: engine_state

toofast: bool,

brake: bool,

lever: lever_pos

#]

We also de�ne the modes of this system as an enumerated type.

modes: TYPE = f off, inactive, cruise, override g

Since we will not specify the output behavior of the system, we will use an uninter-

preted type null for this purpose.

null: TYPE

Now that we have de�ned all the components of the system state, we can import

the appropriate instance of the scr theory.

IMPORTING scr[monitored_vars, modes, null]

To formally specify the mode transition table of Figure 4.1 in PVS, we next

need to specify the conditions that label its columns. The condition activate, for

example, is true when the lever �eld of the monitored vars has the value activate

(note, activate will be overloaded here as both a condition and the value of an

enumerated type). Because lever pos is an enumerated type, activate? is the

predicate that recognizes this value, and so the speci�cation is written as follows.

activate: condition = LAMBDA (m:monitored_vars): activate?(lever(m))

46 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

The conditions deactivate, resume, and running are de�ned similarly.

deactivate: condition = LAMBDA (m:monitored_vars): deactivate?(lever(m))

resume: condition = LAMBDA (m:monitored_vars): resume?(lever(m))

running: condition = LAMBDA (m:monitored_vars): running?(engine(m))

The condition ignited is a little more complicated. It is to be true whenever the

ignition is on, and this is obviously so when the engine state is ignition; however,

it is also so when engine state is running, because the ignition must surely be on

for the engine to be running. Hence, we have the following speci�cation.

ignited: condition = LAMBDA (m:monitored_vars):

ignition?(engine(m)) OR running?(engine(m))

The condition brake is to be true whenever the brake �eld in the monitored vars

is true. The condition toofast is de�ned similarly.

brake : condition = LAMBDA (m:monitored_vars): brake(m)

toofast: condition = LAMBDA (m:monitored_vars): toofast(m)

These two de�nitions may seem redundant, but they are not. In their absence, the

term brake(m) may look like a condition (i.e., predicate) applied to a variable m of

type monitored vars, but it is not: this brake is a record �eld selector and cannot

appear on its own (i.e., not applied to a record m). It is necessary to explicitly

overload brake by the de�nition above to be able to use it as a condition.

We now need to de�ne the mode table of Figure 4.1 in PVS. This kind of table

is rather di�erent than any we have seen before, but it can be recast in the following

generic form.

Current Mode Conditioned Event New Mode

m1 e1;1 m1;1

e1;2 m1;2

� � � � � �
e1;k1 m1;k1

m2 e2;1 m2;1

e2;2 m2;2

� � � � � �
e2;k2 m2;k2

� � � � � � � � �
mp ep;1 mp;1

ep;2 mp;2

� � � � � �
ep;kp mp;kp

4.1. Representing SCR Speci�cations in PVS 47

This is actually the way mode transition tables are presented in formal treat-

ments of the SCR method [19] and is similar to that used in the SCR* toolset [20].

Tables of this form can be speci�ed in PVS using a one-dimensional vertical table

to enumerate the Current Mode, with the Conditioned Event/New Mode subtables

(inside the doubled lines) speci�ed in the manner used for decision tables in the pre-

vious chapter. Using this approach, we can represent the mode table of Figure 4.1

by the PVS speci�cation shown in Figure 4.2. In this speci�cation, the function PC

is imported from the generic scr theory and is de�ned as follows.

A,B,C,D,E,FF,G,H,I,J: VAR EC

a,b,c,d,e,f,g,h,i,j: VAR condition

PC(A)(a)(p,q):bool = A(a)(p,q)

PC(A,B)(a,b)(p,q):bool = A(a)(p,q) & B(b)(p,q)

� � �
PC(A,B,C,D,E,FF,G)(a,b,c,d,e,f,g)(p,q):bool = A(a)(p,q) & B(b)(p,q) &

C(c)(p,q) & D(d)(p,q) & E(e)(p,q) & FF(f)(p,q) & G(g)(p,q)8

� � �

That is, PC (the name is short for \pairwise conjunction") is de�ned as a collection

of functions that each take a list of event constructors and a list of conditions

and conjoins their pairwise applications. The collection contains versions of PC for

di�erent numbers of arguments; PVS resolves the overloading by the number of

arguments provided in any particular application. The type conds7 appearing in

the LET clause of Figure 4.2 is also de�ned in the generic scr theory.

conds1:type = [condition]

conds2:type = [condition, condition]

� � �
conds7:type = [condition, condition, condition, condition,

condition, condition, condition]

� � �

4.1.1 Well-Formedness Checking for SCR Speci�cations in PVS

Typechecking the de�nition original of Figure 4.2 generates three TCCs; these

are disjointness TCCs from the nested tables that specify the transitions from the

modes inactive, cruise, and override. No disjointness TCC is generated for the

transitions frommode off, since there is only a single non-ELSE case in its table. And

no coverage TCCs are generated from any of these tables because they all have ELSE

8The variable FF is used rather than F because the latter is already de�ned in this context as

the event constructor that is true when both its arguments are false.

48 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

original(s: modes, (p, q: monitored_vars)): modes =

LET

x: conds7 = (ignited, running, toofast, brake,

activate, deactivate, resume),

X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))

IN TABLE s

|off| TABLE

%----|----|----|----|----|----|----|----|-----------||
|X(atT , dc , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|----|-----------||
| ELSE | off ||
%----|----------------------------------|-----------||

ENDTABLE ||

|inactive| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc , dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(T , T , dc , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | inactive ||
%----|-----------------------------------|----------||
ENDTABLE ||

|cruise| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF, dc, dc, dc, dc, dc, dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc ,atT , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc , dc ,atT , dc , dc , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc , dc , dc , dc ,atT , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | cruise ||
%----|-----------------------------------|----------||
ENDTABLE ||

|override| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(T , T , dc , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
|X(T , T , dc , F , dc , dc ,atT)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | override ||
% ---|-----------------------------------|----------||
ENDTABLE ||

ENDTABLE

Figure 4.2: PVS Version of the Original Speci�cation of Figure 4.1

4.1. Representing SCR Speci�cations in PVS 49

cases. No TCCs are generated from the outermost table, since PVS recognizes that

it is simply enumerating the values of an enumerated type. The disjointness TCC

from the table giving the transitions from mode inactive is proved automatically

by PVS's default strategy for TCCs, but the other two are not. After applying the

default (cond-disjoint-tcc) proof strategy to the disjointness TCC from the table

giving the transitions from mode cruise, and eliminating some irrelevant formulas

with (hide -1 -2), we are presented with the following sequent.

Trying repeated skolemization, instantiation, and if-lifting,

this yields 8 subgoals:

original_TCC2.1 :

f-1g cruise?(s!1)

f-2g toofast(q!1)

f-3g deactivate?(lever(q!1))

|-------

f1g toofast(p!1)

f2g deactivate?(lever(p!1))

Rule?

This sequent is inviting us to contemplate the case where toofast and deactivate

both go from false to true when in cruisemode. Referring back to the speci�cation,

we see that the �rst of these causes a transition to inactivemode, while the second

causes a transition to override mode. The other subgoals of this failed proof

reveal further similar ambiguities in the mode transitions from cruisemode; similar

analysis of the third TCC reveals comparable problems in the mode transitions from

override mode.

It seems clear that the speci�cation should be modi�ed so that the transitions

from cruise mode to override mode are conditioned on toofast remaining false,

and running remaining true. There are similar problems in the transitions from

the cruise and override modes to the off and inactive modes: the transitions

to off occur when ignited goes false, while those to inactive can occur when

running goes false, and both of these events can occur at once. It seems that the

transitions to inactive need to be conditioned on ignited staying true.

But what about the apparent ambiguity in the transitions from cruise to off

when ignited goes false, and to inactive when toofast goes true? Atlee and

Gannon [3,4] argue that there is no real ambiguity here, because these events cannot

occur together|the engine surely has to be running (and therefore ignited) for

the vehicle to go toofast. Atlee and Gannon add an assumption to this e�ect to

their speci�cation; we also add it to our speci�cation as the axiom engine prop.9

9Atlee and Gannon conjoin running(p) => ignited(p) to this axiom; we do not need to do

so because this property is built in to the way we de�ned the condition ignited. We could have

50 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

Current Conditions Next

Mode Ignited Running Toofast Brake Activate Deactivate Resume Mode

O� @T - - - - - - Inactive

Inactive @F - - - - - - O�

- T - F @T - - Cruise

Cruise @F - - - - - - O�

T @F - - - - - Inactive

- - @T - - - - Inactive

- T F @T - - - Override

- T F - - @T - Override

Override @F - - - - - - O�

T @F - - - - - Inactive

- T - F @T - - Cruise

- T - F - - @T Cruise

Figure 4.3: Deterministic Mode Transition Table for Cruise Control

engine_prop: AXIOM toofast(p) => running(p)

With this assumption, we can simplify the table by removing the condition that

ignited stays true from any transitions where running stays or goes true. Notice

that unlike Atlee and Gannon [3, 4], we do not need to add axioms to ensure dis-

jointness of the conditions activate, deactivate, and resume, since these follow

automatically by their derivation from an enumerated type. Also, we do not need

to be concerned that (for example) the last two transitions from cruise mode have

overlapping conditions|because the destination mode is override in both cases.

PVS suppresses the disjointness TCC on COND (and hence TABLE) entries that have

syntactically identical actions. The revised mode transition table incorporating

these corrections and simpli�cations is shown in Figure 4.3, and the corresponding

PVS speci�cation is shown in Figure 4.4. The three disjointness TCCs generated

by the revised speci�cation are all proved by the following command.

(then (grind)(lemma "engine_prop")(grind :if-match all))

In the next section we show how the model checking capabilities of PVS can be

used to examine application-speci�c properties of this speci�cation.

4.2 Model Checking SCR Speci�cations in PVS

TCCs generated by PVS's COND (and hence TABLE) construct provided useful well-

formedness checks on our SCR requirements speci�cation for the automobile cruise

avoided the need for the axiom altogether by suitably modifying the de�nitions of ignited and

running, but chose not to do so for variety.

4.2. Model Checking SCR Speci�cations in PVS 51

deterministic(s: modes, (p, q: monitored_vars)): modes =

LET

x: conds7 = (ignited, running, toofast, brake,

activate, deactivate, resume),

X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))

IN TABLE s

|off| TABLE

%----|----|----|----|----|----|----|----|-----------||
|X(atT , dc , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|----|-----------||
| ELSE | off ||
%----|----------------------------------|-----------||

ENDTABLE ||

|inactive| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc , dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , dc , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | inactive ||
%----|-----------------------------------|----------||
ENDTABLE ||

|cruise| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF, dc, dc, dc, dc, dc, dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(T ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc ,atT , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , T ,atT , dc , dc , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , T , dc , dc ,atT , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | cruise ||
%----|-----------------------------------|----------||
ENDTABLE ||

|override| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(T ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , dc , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , dc , F , dc , dc ,atT)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | override ||
% ---|-----------------------------------|----------||
ENDTABLE ||

ENDTABLE

Figure 4.4: PVS Version of the Revised Speci�cation of Figure 4.3

52 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

control example. The TCCs led us to discover
aws in the speci�cation, and en-

abled us to demonstrate the absence of these
aws in the corrected speci�cation.

Deeper assurance that the speci�cation captures our intent and intuitive under-

standing requires that we go beyond static attributes of the transition relation and

examine properties of the behavior that it induces. A useful class of properties can

be expressed in the branching time temporal logic called CTL, and their satisfac-

tion by the behavior induced by a given transition relation can be determined very

e�ciently by model checking. Atlee and Gannon [3, 4] were the �rst to apply this

idea to SCR speci�cations. Their approach used a rather indirect encoding of SCR

speci�cations and the MCB model checker. Later, Atlee [1] developed a more direct

encoding suitable for the SMV symbolic model checker [30] that has subsequently

been applied to large examples [40]. Here, we apply PVS's model checker directly

to the PVS speci�cations already developed.

CTL is a branching time temporal logic that extends propositional logic with

modal operators: AX(P) is true when the state predicate (i.e., SCR condition) P

holds in every immediate successor to the current state; EX(P) is true when P holds

in some immediate successor to the current state; AF (P) (resp. EF (P)) means that

along every (resp. some) path (i.e., trace, or succession of states) from the current

state there exists some future state in which P holds; �nally, AG(P) (resp. EG(P))

means that P holds in every state along every (resp. some) path from the current

state.

Following Atlee and Gannon, we examine certain \mode invariants" of the SCR

requirements speci�cation of Figures 4.3 and 4.4. The properties examined by Atlee

and Gannon are the following.10

1. When the mode is off, the ignition is o� (i.e., ignited is false).

2. In modes other than off, the ignition is on (i.e., ignited is true).

3. In inactive mode, either the engine is not running or the cruise control is

not activated.

4. In cruise mode, the engine is running, the vehicle is not going toofast, the

brake is not on, and deactivate is not selected.

5. In override mode, the engine is running.

All of these can be expressed in CTL as AG properties as follows.

1. AG((mode = o�)) :ignited)
10By virtue of the second of these properties, we have eliminated the clause \and the ignition

is on (i.e., ignited is true)" from Atlee and Gannon's statements of the third, fourth, and �fth

properties.

4.2. Model Checking SCR Speci�cations in PVS 53

2. AG((mode 6= o�)) ignited)

3. AG((mode = inactive)) (:running _ :active))

4. AG((mode = cruise)) running ^ :brake)

5. AG((mode = override)) running)

In PVS, a CTL formula is speci�ed by an expression of the following form.

AG(transition relation, predicate)(state)

This example uses the AG operator to assert that the predicate is true on all paths

induced by the given transition relation from the speci�ed state. (All the other

CTL operators, as well as their fair variants, are available in PVS.) Usually, such

expressions appear as the conclusion to an implication whose antecedent asserts

properties of the speci�ed initial state. Usually, too, the predicate is de�ned in place

by means of a LAMBDA abstraction. For example, if init characterizes the initial

state, the �rst invariant above would be speci�ed in PVS as follows.

IMPORTING MU@ctlops, cruise_tab

p,q,r: var state

trans: transition_relation = trans(deterministic)

init(p): bool = off?(p) & NOT ignited(p)

safe1: THEOREM init(p)

=> AG(trans, (LAMBDA q: off?(q) => NOT ignited(q)))(p)

Here, cruise tab is the PVS theory that de�nes the mode table concerned, and

ctlops is the PVS library theory that de�nes the CTL operators. The MU@ctlops

construction indicates that it can be found in the �le MU.pvs in the directory con-

taining the standard PVS libraries (these are distributed with PVS).

Next, we apply the function trans (from the scr theory) to the mode table

deterministic to construct a transition relation (also called trans). Then we

characterize the initial state as one whose mode is off and in which the engine

is not ignited, and state the theorem corresponding to the formulas numbered 1

above.

When all the types involved are �nite, formulas such as this can be proved using

the PVS model checker by �rst setting up all the theories concerned as auto-rewrites,

and then giving the (model-check) command. This will rewrite all the de�ned

54 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

terms down to their primitive forms, reduce CTL operations to expressions in Park's

�-calculus, and then call an external BDD-based �-calculus decision procedure. If

the theorem is true, the decision procedure will so report it. If it is not, the proof

will terminate unsuccessfully. PVS does not, at present, return a falsifying trace in

the case of untrue CTL conjectures. The theorem safe1 is indeed veri�ed by the

model checker using the following prover commands.

(auto-rewrite-theories

("scr" :defs t) "cruise" "cruise_tab" "cruise_test")

(model-check)

Here, scr is the PVS generic SCR theory, cruise is the theory that speci�es the

types used for the cruise control example, cruise tab is the theory that speci-

�es the mode table deterministic, and cruise test is the theory containing the

de�nitions we have given for trans and init. The :defs t quali�er for the scr

theory instructs the prover to rewrite only de�nitions (as opposed to all conditional

equations of the right form), and is important because PVS can �gure out the cor-

rect theory instantiation on the
y in this case. Without this quali�er, it would

be necessary to explicitly specify the required instance(s) of the scr theory in the

auto-rewrite-theories command.

The other four CTL properties listed above are speci�ed by the following PVS

formulas.

safe2: THEOREM init(p)

=> AG(trans, (LAMBDA q: NOT off?(q) => ignited(q)))(p)

safe3: THEOREM init(p)

=> AG(trans,

(LAMBDA q: inactive?(q) =>

NOT running(q) OR NOT activate?(q)))(p)

safe4: THEOREM init(p)

=> AG(trans,

(LAMBDA q: cruise?(q) =>

running(q) & NOT toofast(q)

& NOT brake(q) & NOT deactivate?(q)))(p)

safe5: THEOREM init(p)

=> AG(trans, (LAMBDA q: override?(q) => running(q)))(p)

Theorems safe2 and safe5 are proved by model checking in the same way as safe1,

but safe3 and safe4 fail. The failure to prove safe4 motivates closer examination

of the speci�cation|this reveals that although cruisemode is exited when toofast

4.2. Model Checking SCR Speci�cations in PVS 55

goes true, the transitions into cruise mode neglect to check that toofast is false

before making the transition. The correction is to add the condition F(toofast)

to the three transitions into cruise mode. The corrected speci�cation is shown in

Figures 4.5 and 4.6.

Current Conditions Next

Mode Ignited Running Toofast Brake Activate Deactivate Resume Mode

O� @T - - - - - - Inactive

Inactive @F - - - - - - O�

- T F F @T - - Cruise

Cruise @F - - - - - - O�

T @F - - - - - Inactive

- - @T - - - - Inactive

- T F @T - - - Override

- T F - - @T - Override

Override @F - - - - - - O�

T @F - - - - - Inactive

- T F F @T - - Cruise

- T F F - - @T Cruise

Figure 4.5: Corrected Mode Transition Table for Cruise Control

The problem with conjecture safe3 is of a di�erent kind from that with the

theorem safe4. Examination of the speci�cation reveals that safe3 is false because,

for example, it is possible for ignited, running, and activate to become true

simultaneously when the system is in off mode. This will cause a transition to

inactive mode in a state that violates the invariant of safe3. Contemplation of

the intent of the speci�cation suggests that this is acceptable: it is not the transition

relation that is wrong, but our formulation of the intended invariant for inactive

mode. Atlee [1, page 9] suggests that a more appropriate invariant is one that

states that if the current mode is inactive and the invariants for cruise mode

apply when activate goes true, then the next mode will not be inactive. This

can be expressed by the following formula, which is shown to be a theorem by the

PVS model checker.

trans:transition_relation = trans(corrected)

safe6: THEOREM init(p)

=> AG(trans, (LAMBDA q:

inactive?(q) & ignited(q) & running(q)

& NOT toofast(q) & NOT brake(q) & NOT activate?(q))

IMPLIES

NOT EX(N, (LAMBDA r: inactive?(r) & ignited(r)

& running(r) & NOT toofast(r) & NOT brake(r)

& activate?(r))))(p)

56 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

corrected(s: modes, (p, q: monitored_vars)): modes =

LET

x: conds7 = (ignited, running, toofast, brake,

activate, deactivate, resume),

X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))

IN TABLE s

|off| TABLE

%----|----|----|----|----|----|----|----|-----------||
|X(atT , dc , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|----|-----------||
| ELSE | off ||
%----|----------------------------------|-----------||

ENDTABLE ||

|inactive| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc , dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , F , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | inactive ||
%----|-----------------------------------|----------||
ENDTABLE ||

|cruise| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF, dc, dc, dc, dc, dc, dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(T ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , dc ,atT , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , T ,atT , dc , dc , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , T , dc , dc ,atT , dc)| override ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | cruise ||
%----|-----------------------------------|----------||
ENDTABLE ||

|override| TABLE

%----|----|----|----|----|----|----|-----|----------||
|X(atF , dc dc , dc , dc , dc , dc)| off ||
%----|----|----|----|----|----|----|-----|----------||
|X(T ,atF , dc , dc , dc , dc , dc)| inactive ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , F , F ,atT , dc , dc)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
|X(dc , T , F , F , dc , dc ,atT)| cruise ||
%----|----|----|----|----|----|----|-----|----------||
| ELSE | override ||
% ---|-----------------------------------|----------||
ENDTABLE ||

ENDTABLE

Figure 4.6: PVS Version of the Corrected Speci�cation of Figure 4.5

4.3. Interacting Transition Speci�cations 57

Perhaps the most interesting feature here is not the utility of this particular formula,

but its exempli�cation of nested CTL operators.

The most interesting feature of the overall exercise, however, is its integrated

character: completeness and consistency checking, model checking of application

properties, and (although we did not demonstrate these) direct evaluation of test

cases and proof of general properties are all driven from the same speci�cation. This

is not only more convenient than, say, the translation to the language of the SMV

model checker employed by Atlee, but it provides the assurance of working within a

single semantics. Because the di�erent methods of analysis are integrated and share

a common semantics in PVS, they can be used in combination, so that arbitrary

theorem proving (and not just propositional tautology checking) can be used to settle

consistency checks, and theorem proving can be used to augment model checking

in di�cult cases. Furthermore, it is not just di�erent methods of analysis that can

brought to bear: the full resources of the PVS language are available within table

entries, and other methods of speci�cation can be combined with tabular forms.

In the next section, we will exploit this capability to allow tables representing SCR

transition relations to be combined using ordinary relational composition and we will

show how to establish that di�erent transition relations induce identical behavior.

4.3 Interacting Transition Speci�cations

The cruise control example has only a single mode transition table. Matters can

become much more complex when multiple, interacting transition systems are con-

sidered. In the case of Statecharts, for example, von der Beeck [44] identi�es 21

di�erent proposed semantics|most of these di�er only in their treatment of inter-

acting systems. One of the central di�culties is that of accounting for transitions

due to internal events. In the cruise control example, it was understood that events

such as brake becoming true, or running becoming false, happen in the external

environment; with interacting systems, however, an event may be a mode transition

in another system. Thus, a transition in one system may trigger one in another,

leading to a potentially in�nite cycle of activity without reference to the external

environment. In the SCR method, such potential cycles are broken by requiring that

events are ordered in some way. Here, we consider a simple example and show that

the resources of PVS allow transition relations to be composed in a variety of ways.

We argue that rather than build the treatment of interaction into the methodology,

it may be best to allow this to be speci�ed directly.

4.3.1 A Requirements Speci�cation

Our example derives from an autopilot speci�cation developed by Ricky Butler

of NASA Langley Research Center [7]. Whereas an automobile's cruise control

58 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

is concerned with only a single attribute|speed|an autopilot is responsible for

many attributes and the functions controlling the di�erent attributes interact with

one another. For example, one function is responsible for acquiring and holding a

particular altitude, while another is responsible for climbing at a particular rate.

If a pilot dials in a desired altitude signi�cantly higher than the present altitude,

the altitude function does not become active immediately|a desired rate of climb

must also be speci�ed. Similarly, dialing in a desired rate of climb does not cause the

plane immediately to start climbing|a target altitude must also be speci�ed. Thus,

these two functions cannot become active independently. When only one of them

is selected, it is held in an intermediate \armed" state; when the other is selected,

both jump to the \on" state. Conversely, if one of them is subsequently deselected,

the other must drop back from its \on" to its \armed" state.

We might attempt to write a requirements speci�cation for this behavior in

which each component (\altitude level" and \climb angle") is speci�ed as a sepa-

rate transition system whose transitions are partly contingent on those of the other.

The complexity in this treatment would be compounded if we also desire that the

individual speci�cations are those of components that could be developed indepen-

dently. In this case, the individual speci�cations must serve a double duty: their

composition must specify the behavior required of the overall system, and they must

also serve as speci�cations of components. It seems to us that this approach con-

ates the issue of overall requirements speci�cation with that of re�nement to an

implementation. We prefer to specify the overall requirement as the interaction of

separate transition systems that are chosen for simplicity and clarity of expression,

rather than because they correspond to components in an implementation. We can

then develop a separate implementation speci�cation and show that it induces the

same behavior as the requirement speci�cation.

We exemplify this approach with a drastically simpli�ed version of the autopilot.

We will have two attributes: climb and level, both of which may be either off,

armed, or on. Each attribute is controlled by a separate button. If the climb

attribute is off when its button is pressed, then it may change to either the armed

or on states; otherwise, it stays off. If the button is pressed when the climb

attribute is either armed or on, then the attribute is turned off; otherwise (if the

button is not pressed) it may nondeterministically transition between either of these

states (the nondeterminism will be resolved later). The level attribute is speci�ed

dually. Notice that these two speci�cations are completely independent: that for

climb does not mention level, nor vice versa. If we specify the overall system as the

disjunction of the separate climb and level speci�cations, then the overall system

includes all the behaviors we require, but also many that we do not. We complete the

speci�cation by simply conjoining it with one that excludes the undesired behaviors:

namely, one that says that climb is on if and only if level is also on, and that climb

and level cannot both be armed.

4.3. Interacting Transition Speci�cations 59

A PVS rendition of this speci�cation in SCR-style is shown in Figures 4.7 and 4.8.

Coff, Carm, and Con indicate whether the climb attribute is off, armed, or on,

linkedmodes: THEORY

BEGIN

modes: TYPE = foff, armed, ong

combined_modes: TYPE = [# climbmode, levelmode: modes #]

m, n: VAR combined_modes

Coff(m): bool = off?(climbmode(m))

Carm(m): bool = armed?(climbmode(m))

Con(m): bool = on?(climbmode(m))

Loff(m): bool = off?(levelmode(m))

Larm(m): bool = armed?(levelmode(m))

Lon(m): bool = on?(levelmode(m))

monitored_vars: TYPE = [# Cbutton, Lbutton: bool #]

p, q: VAR monitored_vars

null: TYPE

IMPORTING MU@ctlops, scr[monitored_vars, combined_modes, null]

r, s, t: VAR state

Cbutton: condition = LAMBDA p: Cbutton(p)

Lbutton: condition = LAMBDA p: Lbutton(p)

Figure 4.7: Preamble to PVS Requirements Speci�cation for Interacting Autopilot

Modes

respectively, and Cbutton indicates whether its button is pressed. Loff, Larm, Lon,

and Lbutton perform dual roles for the level attribute.

The individual transition relations are speci�ed directly as Ctransition and

Ltransition rather than indirectly by means of mode tables. This is because the

transitions are deliberately nondeterministic: the next mode for Ctransition in the

off mode when the Cbutton is pressed is either the arm or the on mode. If we tried

60 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

Ctransition(s,t): bool =

LET x: conds2 = (Cbutton, Lbutton),

X = (LAMBDA (a,b:EC): PC(a,b)(x)(vars(s),vars(t)))

IN TABLE climbmode(mode(s))

|off| TABLE

%---------------------------------%

|X(atT, dc) | Carm(t) OR Con(t) ||

|ELSE | Coff(t) ||

%---------------------------------%

ENDTABLE ||

|armed| TABLE

%---------------------------------%

|X(atT, dc) | Coff(t) ||

|ELSE | Carm(t) OR Con(t) ||

%---------------------------------%

ENDTABLE ||

|on| TABLE

%---------------------------------%

|X(atT, dc) | Coff(t) ||

|ELSE | Carm(t) OR Con(t) ||

%---------------------------------%

ENDTABLE ||

ENDTABLE

Ltransition(s, t): bool =

LET x: conds2 = (Cbutton, Lbutton),

X = (LAMBDA (a,b:EC): PC(a,b)(x)(vars(s),vars(t)))

IN TABLE levelmode(mode(s))

|off| TABLE

%---------------------------------%

|X(dc, atT) | Larm(t) OR Lon(t) ||

|ELSE | Loff(t) ||

%---------------------------------%

ENDTABLE ||

|ELSE| TABLE

%---------------------------------%

|X(dc, atT) | Loff(t) ||

|ELSE | Larm(t) OR Lon(t) ||

%---------------------------------%

ENDTABLE ||

ENDTABLE

exclude(s): bool = (Con(s) IFF Lon(s)) AND NOT (Carm(s) AND Larm(s))

req(s,t): bool =

(Ctransition(s,t) OR Ltransition(s,t)) AND exclude(s) AND exclude(t)

init(s): bool = Coff(s) AND Loff(s)

Figure 4.8: Transition Relations of PVS Requirements Speci�cation for Interacting

Autopilot Modes

4.3. Interacting Transition Speci�cations 61

to specify this as a mode transition table, we would get unprovable TCCs, since

such a table is intended to de�ne the new mode as a function of the present one

and the events. By using disjunctions in the \action" parts of the tables specifying

the transition relations, we make the nondeterminism explicit and no TCCs are

generated. Notice that, for variety, Ctransition explicitly enumerates over all

modes, whereas Ltransition collapses the cases for armed and on into the ELSE

case.

The overall transition relation req is the disjunction of the climb and level

mode transitions, conjoined with the predicate that excludes undesired states. This

predicate, exclude, states that the climb and level attributes must both be on

together, and cannot both be armed. The initial state init is speci�ed as one where

both climb and level are off.

We can determine that this speci�cation preserves the safety properties we are

interested in by checking the following \challenge" theorems

safe1: THEOREM init(s) => AG(req, (LAMBDA t: Con(t) => Lon(t)))(s)

safe2: THEOREM init(s) => AG(req, (LAMBDA t: NOT (Carm(t) & Larm(t))))(s)

Of course, these are trivially ensured by the speci�cation and can be deduced by

inspection, but they are also easily proved by the PVS (model-check) command.

More interesting here are liveness properties: we may wonder whether we have

not excluded too many behaviors, so that the system can never get to states where

both attributes are on, or one is armed and the other off. We can test these

expectations by the following formulas (the CTL EF operator requires the property

to be true at some point on some path).

live1: THEOREM init(s) => EF(req, (LAMBDA t: Carm(t) & Loff(t)))(s)

live2: THEOREM init(s) => EF(req, (LAMBDA t: Con(t) & Lon(t)))(s)

These properties are easily be shown to be true by the PVS (model-check) com-

mand.

We consider that our speci�cation is a clear and direct speci�cation of require-

ments for the autopilot. The Ctransition and Ltransition relations separately

constrain the possible successors to any state in terms of the climb and levelmodes

and buttons, and the exclude predicate completes the speci�cation by disallowing

certain combinations of modes. A more traditional speci�cation would have made

the climb and level transition speci�cations interdependent in order to exclude

the disallowed combinations of modes. We regard such a speci�cation more as a

description of an implementation than as a statement of requirements. In the fol-

lowing section, we show how a deterministic implementation can be speci�ed and

shown to have the same behavior as our requirements speci�cation.

62 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

4.3.2 An Implementation Speci�cation, and

Veri�cation of Equivalence

An implementation of the requirements described in Figure 4.8 might have a much

more monolithic and sequential character than suggested by the highly nondeter-

ministic requirements speci�cation. One approach might involve two phases. In

the �rst, button presses for climb and level are processed independently, but de-

terministically (pressing the climb button in off mode sends it to armed mode;

pressing it in armed or on mode sends it to off mode; the button for level works

similarly). Then, in the second phase, the modes of the two attributes are brought

into alignment: if the �rst phase has resulted in both attributes not being off, both

are turned on; if one is on but the other off, then on changes to armed. We can

think of button pushes being latched by some underlying operating system compo-

nent; the state of these latches is examined in the �rst phase only. Consequently,

the state of the buttons is held constant in the second phase. The two phases can

be speci�ed in PVS as shown in Figure 4.9. These transition relations are speci�ed

in IF-THEN-ELSE style, as be�ts their sequential interpretation. The overloadings in

the LET clauses simply allow the mode �eld accessor to be omitted in references to

the state variables s and t. The sequential composition of the two phases into the

overall implementation transition relation impl is speci�ed as ordinary relational

composition.

We can check this \implementation" against the same reasonableness checks as

the requirements.

safe1_i: THEOREM init(s) => AG(impl, (LAMBDA r: Con(r) => Lon(r)))(s)

safe2_i: THEOREM init(s) =>

AG(impl, (LAMBDA r: NOT (Carm(r) & Larm(r))))(s)

live1_i: THEOREM init(s) => EF(impl, (LAMBDA r: Carm(r) & Loff(r)))(s)

live2_i: THEOREM init(s) => EF(impl, (LAMBDA r: Con(r) & Lon(r)))(s)

The PVS model checker quickly veri�es these.

What we really want to know, however, is whether the behavior speci�ed by

the implementation relation impl satis�es the requirements speci�cation req. The

relations impl and req need not be equal or similar as relations: what matters is

whether they induce similar behaviors. A CTL formula that expresses the property

that the behavior of a transition relation A is a superset of that of a transition

relation B (i.e., A can do anything B can do) is the following.

4.3. Interacting Transition Speci�cations 63

P: VAR condition

Phase1(s, t): bool =

LET atT = (LAMBDA P: atT(P)(vars(s),vars(t))),

climbmode = (LAMBDA s: climbmode(mode(s))),

levelmode = (LAMBDA s: levelmode(mode(s)))

IN

IF atT(Cbutton) THEN

If Coff(s) THEN Carm(t) ELSE Coff(t) ENDIF

ELSE climbmode(s) = climbmode(t)

ENDIF

OR

IF atT(Lbutton) THEN

If Loff(s) THEN Larm(t) ELSE Loff(t) ENDIF

ELSE levelmode(t) = levelmode(s)

ENDIF

Phase2(s, t): bool =

LET climbmode = (LAMBDA s: climbmode(mode(s))),

levelmode = (LAMBDA s: levelmode(mode(s)))

IN

IF NOT (Coff(s) OR Loff(s)) THEN Con(t) AND Lon(t)

ELSIF Coff(s) AND Lon(s) THEN Coff(t) AND Larm(t)

ELSIF Loff(s) AND Con(s) THEN Loff(t) AND Carm(t)

ELSE climbmode(t) = climbmode(s)

AND levelmode(t) = levelmode(s)

ENDIF

AND Cbutton(t) = Cbutton(s)

AND Lbutton(s) = Lbutton(t)

impl(s, t): bool = (EXISTS r: Phase1(s, r) AND Phase2(r, t))

Figure 4.9: PVS Implementation Speci�cation for Autopilot

64 Chapter 4. State Transition Systems and SCR Requirements Speci�cations

A, B: VAR transition_relation

super(A, B)(s:state):bool =

AG(B, (LAMBDA t: AX(B, (LAMBDA r: A(t,r)))(t)))(s)

What this formula says is that it is invariantly the case, at all states t reachable by

B from the state s, that any state reachable in one step from t by B, is also reachable

in one step by A. We can then assert that the behavior of req is a superset of that

of impl, and vice versa (i.e., the behaviors induced by the two speci�cations are the

same), by the following formulas.

req_impl: LEMMA init(s) => super(req, impl)(s)

impl_req: LEMMA init(s) => super(impl, req)(s)

The PVS model checker veri�es both of these.

A subtle point in these speci�cations is the disjunction that appears in the de�ni-

tion of req and in the de�nition of Phase1. These indicate interleaving concurrency.

It is possible to replace both ORs by ANDs (indicating true concurrency) and still ver-

ify all the results in this section. If only one is changed, the safety and liveness results

remain true, but only one of the superset properties connecting req and impl will

hold (the behavior of the one using true concurrency will be a strict superset of

the other). The ability to represent di�erent models of concurrency is another of

the bene�ts that follows from undertaking this development within a fully general

speci�cation and veri�cation environment.

Overall, this \autopilot" speci�cation demonstrates the
exibility provided by

a general-purpose system such as PVS: the resources of the system allow us to

reproduce methodologies such as SCR when these are appropriate, but also allow

us to depart from them when necessary.

Chapter 5

Conclusion

We have shown previously [37] how PVS can be used to discharge the well-

de�nedness proof obligations that arise in Parnas's tabular speci�cation style [33].

Those proof obligations were generated by hand. In this report, we have described

the COND construct, recently added to PVS, that generates the proof obligations

automatically, and the TABLE construct that provides a visually appealing rendition

of tabular speci�cations.

These new constructs required no change to the core of PVS; the COND construct

required small extensions to the typechecker, but none to the prover, and TABLE is

simply a syntactic variation on COND. In the future, we hope to make the imple-

mentation of PVS more \open," so that similar customizations can be made very

easily.

We have also shown how standard notation for function application can be

adapted to provide a tolerable representation for the AND/OR tables used in

RSML [29], and then showed how this technique can be combined with the new

TABLE construct to provide a treatment for the Decision Tables advocated by

Sherry [39].

We then described how an independent enhancement to PVS|the incorpora-

tion of a decision procedure for Park's �-calculus and its use to provide CTL model

checking [35]|enables properties of �nite-state transition systems to be examined

automatically. These two developments|tables and model checking|come together

to provide support for the Naval Research Laboratory's SCR method for require-

ments speci�cation [11].

The generic support provided for tables and for model checking in PVS may be

compared with the more specialized support provided in tools such as ORA's Table-

Wise [23], NRL's SCR* [18,20], and Leveson and Heimdahl's consistency checker for

RSML [17]. Dedicated, lightweight tools such as these are likely to be superior to

65

66 Chapter 5. Conclusion

a heavyweight, generic system such as PVS for their chosen purposes. Our goal in

providing these capabilities in PVS is not to compete with specialized tools but to

complement them. The generic capabilities of PVS can be used to prototype some

of the capabilities of specialized tools (this was done in the development of Table-

Wise), and can also be used to supplement their capabilities when comprehensive

theorem proving and model checking power is needed. Heimdahl, for example, has

noted that consistency analysis of the TCAS II requirements speci�cation in RSML

produced many spurious error reports because only simple propositional reasoning

was available [16]. As well as being able to settle more demanding consistency and

completeness checks, we have illustrated how the general theorem proving power of

PVS can be used to probe tabular speci�cations by attempting to prove \challenge"

theorems. We also showed how the PVS model checker can be used to test proper-

ties of the behaviors speci�ed by SCR mode transition tables, and even to establish

inclusion or equivalence between the behaviors of di�erent speci�cations. All these

capabilities are available within a common framework and can be used together.

In addition to being of interest to tool developers, we hope that these examples

showing how PVS can represent the speci�cation styles of some existing methodolo-

gies will encourage PVS users to incorporate these styles in their own speci�cations

where appropriate, and will also help users to develop support for other methodolo-

gies within PVS.

The methodologies we have examined here are primarily concerned with require-

ments speci�cations for avionics applications. Hoover, Guaspari, and Humenn pro-

vide a general examination of the use of formal methods in these applications [24].

Requirements speci�cations are particularly challenging to formalize: because there

is no \higher" speci�cation against which to verify them, it is particularly important

that they should be perspicuous and well suited to human review. Tabular forms of

expression seem to serve these needs well. But because veri�cation against a higher

speci�cation is impossible, we believe that it is also important that requirements

speci�cations should be subjected to a great deal of mechanized analysis. Mecha-

nization is needed for reliability and e�ciency and, since requirements speci�cations

evolve continuously, repeatability. Tabular speci�cations also serve these needs well:

their completeness and consistency checks catch many errors very quickly. However,

deterministic speci�cations are not always the most appropriate and it is important

not to become overly committed to a single style of speci�cation. In our deliberately

nondeterministic \autopilot" example, we were able to retain the tabular style of

an SCR speci�cation, while consciously eschewing its normal consistency checks.

We could do his because we had direct access to the representation and model of

computation employed. We were able to resolve the nondeterminism using other

resources of the PVS speci�cation language (conjunction and disjunction of transi-

tion relations) and to explore the speci�cation using model checking. This ability

67

to depart from the \standard" SCR approach would be absent from tools dedicated

to that standard approach.

In future work, we plan to examine use of nondeterministic state transition

relations for top-level requirements speci�cation of interacting systems (as in the

\autopilot" example) in more detail. We are also considering a sublanguage to

PVS based on state transition relations that would serve as a convenient interme-

diate form for a number of analyses (e.g., simulation, explicit state enumeration,

model checking, synthesis) in a variety of application domains (e.g., requirements,

hardware, protocols). We also plan to explore the rather di�erent approach to re-

quirements speci�cations used in synchronous data
ow languages, exempli�ed by

Lustre [13].

68

Bibliography

Most papers by SRI authors can be retrieved from http://www.csl.sri.com/fm.

html. PVS speci�cation �les for several of the examples used here can be downloaded

from http://www.csl.sri.com/pvs/examples/tables; PVS itself is available at

http://www.csl.sri.com/pvs.html.

[1] Joanne M. Atlee. Native model-checking of SCR requirements. In Fourth In-

ternational SCR Workshop, Washington, DC, November 1994. Naval Research

Laboratory.

[2] Joanne M. Atlee and Michael A. Buckley. A logic-model semantics for SCR

software requirements. In Steven J. Zeil, editor, International Symposium on

Software Testing and Analysis (ISSTA), pages 280{292, San Diego, CA, Jan-

uary 1996. Association for Computing Machinery.

[3] Joanne M. Atlee and John Gannon. State-based model checking of event-

driven system requirements. In SIGSOFT '91: Software for Critical Systems,

pages 16{28, New Orleans, LA, December 1991. Published as ACM SIGSOFT

Engineering Notes, Volume 16, Number 5.

[4] Joanne M. Atlee and John Gannon. State-based model checking of event-driven

system requirements. IEEE Transactions on Software Engineering, 19(1):24{

40, January 1993.

[5] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys, 24(3):293{318, September 1992.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-

bolic model checking: 1020 states and beyond. Information and Computation,

98(2):142{170, June 1992.

[7] Ricky W. Butler. An introduction to requirements capture using PVS: Speci-

�cation of a simple autopilot. NASA Technical Memorandum 110255, NASA

Langley Research Center, Hampton, VA, May 1996.

69

70 Bibliography

[8] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial

functions. In Carroll Morgan and J. C. P. Woodcock, editors, Proceedings of

the Third Re�nement Workshop, pages 51{69. Springer-Verlag Workshops in

Computing, 1990.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-

state concurrent systems using temporal logic speci�cations. ACM Transactions

on Programming Languages and Systems, 8(2):244{263, April 1986.

[10] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking

and abstraction. ACM Transactions on Programming Languages and Systems,

16(5):1512{1542, September 1994.

[11] S. Faulk and P. Clements. The NRL Software Cost Reduction (SCR) require-

ments speci�cation methodology. In Fourth International Workshop on Soft-

ware Speci�cation and Design, Monterey, CA, April 1987. IEEE Computer So-

ciety.

[12] Stuart Faulk, John Brackett, Paul Ward, and James Kirby, Jr. The CoRE

method for real-time requirements. IEEE Software, 9(5):22{33, September

1992.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
ow

programming language Lustre. Proceedings of the IEEE, 79(9):1305{1320,

September 1991.

[14] D. Harel et al. STATEMATE: A working environment for the development

of complex reactive systems. IEEE Transactions on Software Engineering,

16(4):403{414, April 1990.

[15] Zvi Har'El and Robert P. Kurshan. Software for analytical development

of communications protocols. AT&T Technical Journal, 69(1):45{59, Jan-

uary/February 1990.

[16] Mats P. E. Heimdahl. Experiences and lessons from the analysis of TCAS II.

In Steven J. Zeil, editor, International Symposium on Software Testing and

Analysis (ISSTA), pages 79{83, San Diego, CA, January 1996. Association for

Computing Machinery.

[17] Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency

analysis of state-based requirements. In 17th International Conference on Soft-

ware Engineering, pages 3{14, Seattle, WA, April 1995. IEEE Computer Soci-

ety.

Bibliography 71

[18] Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw. SCR*:

A toolset for specifying and analyzing requirements. In COMPASS [25], pages

109{122.

[19] Constance Heitmeyer, Ralph Je�ords, and Bruce Labaw. Tools for analyzing

SCR-style requirements speci�cations: A formal foundation. Technical Report

7499, Naval Research Laboratory, Washington DC, 1995. In press.

[20] Constance Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency checking

of SCR-style requirements speci�cations. In International Symposium on Re-

quirements Engineering, York, England, March 1995. IEEE Computer Society.

[21] K. L. Heninger. Specifying software requirements for complex systems: New

techniques and their application. IEEE Transactions on Software Engineering,

SE-6(1):2{13, January 1980.

[22] K. L. Heninger et al. Software requirements for the A-7E aircraft. NRL Report

3876, Naval Research Laboratory, November 1978.

[23] D. N. Hoover and Zewei Chen. Tablewise, a decision table tool. In COMPASS

[25], pages 97{108.

[24] D. N. Hoover, David Guaspari, and Polar Humenn. Applications of formal

methods to speci�cation and safety of avionics software. NASA Contractor Re-

port 4723, NASA Langley Research Center, Hampton, VA, April 1996. (Work

performed by Odyssey Research Associates).

[25] COMPASS '95 (Proceedings of the Tenth Annual Conference on Computer As-

surance), Gaithersburg, MD, June 1995. IEEE Washington Section.

[26] Ryszard Janicki. Towards a formal semantics of Parnas tables. In 17th Interna-

tional Conference on Software Engineering, pages 231{240, Seattle, WA, April

1995. IEEE Computer Society.

[27] G. L. J. M. Janssen. ROBDD Software. Department of Electrical Engineering,

Eindhoven University of Technology, October 1993.

[28] L. Lamport. Sometime is sometimes not never. In 10th ACM Symposium on

Principles of Programming Languages, pages 174{185, Austin, TX, January

1983.

[29] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon

Reese. Requirements speci�cation for process-control systems. IEEE Transac-

tions on Software Engineering, 20(9):684{707, September 1994.

72 Bibliography

[30] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

Boston, MA, 1993.

[31] David Park. Finiteness is mu-ine�able. Theoretical Computer Science, 3:173{

181, 1976.

[32] David Lorge Parnas. Tabular representation of relations. Technical Report

CRL Report 260, Telecommunications Research Institute of Ontario (TRIO),

Faculty of Engineering, McMaster University, Hamilton, Ontario, Canada, Oc-

tober 1992.

[33] David Lorge Parnas. Some theorems we should prove. In Je�rey J. Joyce

and Carl-Johan H. Seger, editors, Higher Order Logic Theorem Proving and its

Applications (6th International Workshop, HUG '93), volume 780 of Lecture

Notes in Computer Science, pages 155{162, Vancouver, Canada, August 1993.

Springer-Verlag.

[34] Vaughan Pratt. Anatomy of the Pentium bug. In TAPSOFT '95: Theory and

Practice of Software Development, volume 915 of Lecture Notes in Computer

Science, pages 97{107, Aarhus, Denmark, May 1995. Springer-Verlag.

[35] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking

with automated proof checking. In Pierre Wolper, editor, Computer-Aided

Veri�cation, CAV '95, volume 939 of Lecture Notes in Computer Science, pages

84{97, Liege, Belgium, June 1995. Springer-Verlag.

[36] H. Rue�, N. Shankar, and M. K. Srivas. Modular veri�cation of SRT division. In

Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided Veri�cation,

CAV '96, volume 1102 of Lecture Notes in Computer Science, pages 123{134,

New Brunswick, NJ, July/August 1996. Springer-Verlag.

[37] John Rushby and Mandayam Srivas. Using PVS to prove some theorems of

David Parnas. In Je�rey J. Joyce and Carl-Johan H. Seger, editors, Higher Or-

der Logic Theorem Proving and its Applications (6th International Workshop,

HUG '93), volume 780 of Lecture Notes in Computer Science, pages 163{173,

Vancouver, Canada, August 1993. Springer-Verlag.

[38] Lance Sherry. Apparatus and method for controlling the vertical pro�le of an

aircraft. United States Patent 5,337,982, August 16, 1994.

[39] Lance Sherry. A structured approach to requirements speci�cation for software-

based systems using operational procedures. In 13th AIAA/IEEE Digital

Avionics Systems Conference, pages 64{69, Phoenix, AZ, October 1994.

Bibliography 73

[40] Tirumale Sreemani and Joanne M. Atlee. Feasibility of model checking software

requirements. In COMPASS '96 (Proceedings of the Eleventh Annual Confer-

ence on Computer Assurance), pages 77{88, Gaithersburg, MD, June 1996.

IEEE Washington Section.

[41] G. S. Taylor. Compatible hardware for division and square root. In Proceedings

of the 5th Symposium on Computer Arithmetic, pages 127{134. IEEE Computer

Society, 1981.

[42] A. John van Schouwen. The A-7 requirements model: Re-examination for real-

time systems and an application to monitoring systems. Technical Report 90-

276, Department of Computing and Information Science, Queen's University,

Kingston, Ontario, Canada, May 1990.

[43] A. John van Schouwen, David Lorge Parnas, and Jan Madey. Documentation

of requirements for computer systems. In IEEE International Symposium on

Requirements Engineering, pages 198{207, San Diego, CA, January 1993.

[44] Michael von der Beeck. A comparison of statecharts variants. In H. Langmaack,

W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and

Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science,

pages 128{148, L�ubeck, Germany, September 1994. Springer-Verlag.

